

Novel 2D Photonic Crystals Structures

Christopher J. Summers, Curtis W. Neff and Tsuyoshi Yamashita

School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0245 www.nanophotonics.gatech.edu

First International Symposium on Optoelectronics in Optics Valley of China Wuhan, China 2rd – 4th November, 2005

- 3D Photonic Crystal Structures
 - PC Micro-cavities, Phosphors
 - Atomic Layer Epitaxy: Templating
 - Inverse/Non Close Packed Opals
 - Holographic Templates
- 2D Photonic Crystal Waveguides
 - Triangular and Square lattices
 - Superlattices triangular based
 - Non-Linear Structures

- 2D Photonic Crystal Structures
 - "Virtual Waveguides" Low divergent propagation in slab waveguides
 - "Fabry-Perot Etalons" spectral tuning
- 2D Superlattice Photonic Crystal Waveguide Structures
 - Superlattices triangular based
 - Static; Hybrid; E/O superlattice
 - Non-Linear Structures
 - Liquid Crystal Infiltration of 2D PC
 - Non-linear & Electro-Optical (EO) materials
- Impact of New Structures & Materials
 - Tunable effects

Advantages of free-space optics No coupling

- Intersections allowed
- Broadband operation
- Advantages of integrated optics
 - Confined beams
 - No hermetic packaging
 - One lithography step
- Disadvantages
 - Small feature sizes required (beam size ~15a)
 - Compared to 2-3a for line defect PC waveguides
- PC mirrors have lower PBG
 - Collimation exploits same phenomena as sub-wavelength focusing

Beam Properties

Georgia Institute of Technology Divergence Angle of 2D Gaussian Beam

> A Gaussian beam spreads in the paraxial approximation in an 2 isotropic material as:

$$\frac{\theta}{2} = \frac{\Delta k_x}{k_z} = \frac{\lambda}{\pi \omega_0}$$

• The divergence determines the coupling efficiency into the photonic crystal

GeorgialInstitute of Technology Analysis of 2D Photonic Crystals Square Lattice

- Square lattice
 - Hole diameter
 - Refractive index

- Band Diagram
 - Boundaries of the band surface
 - Identification of band gaps

- Allowed Wave Vector Curve
 - Equifrequency curves of the band surface
 - Identification of propagation effects

Concavity Reversal Near Brillouin Zone GeorgiaInstitute **Boundaries**

- First band concavity reverses near the M point in a square lattice
- Dispersion curve approximately linear and normal to the $\Gamma\text{-}M$ direction near the concavity reversal
- Robust to small fluctuations in λ and r
- Provides orthogonal grid of propagation for ease of design
- First band guarantees confinement along the thickness of the waveguide

Dispersion Curve Analysis of Square Lattice PC

• Canceling of Z-component leads to self-collimation

Georgia

offechnold

• Effective negative index for the energy propagation obtained

Georgia Self-Collimated Beams in FDTD Simulation

- FDTD simulation of self-collimation
 - $-\omega_n = 0.26$ - $\lambda = 1.55$ mm
- Clear intensity confinement in photonic crystal
 - ~25x longer propagation possible than in air
 - No discernable beam spread for 120µm of propagation of a 8.5µm wide beam
- Beam spread decreased by an order of magnitude or more with beam sizes as small as $5-10 \lambda_0$
- Applications include:
 - Virtual waveguide interconnect system
 - Miniaturization of conventional optical components for small beams

Photonic Crystal

- Principle of operation
 - Gaussian like input from input waveguide
 - Beam spread observable from number of lit output waveguides

- Quality requirement
 - Smooth surfaces ($<L_s/20$)
 - Anisotropic sidewalls (<5°)
 - Uniform hole sizes in photonic crystal (<5% locally)
 - Large area ~ 150 μ m²

Georgialnetitute Test Structures of "Virtual Waveguide"

- Input waveguide, photonic crystal, fan of waveguides for analysis
- Examples of photonic crystal fabrication.

Direct Top-View Measurements

Georgia Institute

• Infrared camera utilized to view scattered light from the device

- Test structure with no photonic crystal:
 - Approximately 8 WGs lit up

- Test structure with "virtual waveguide" photonic crystal:
 Only central waveguide lit up
- Very good beam collimation in PC

Applications: Fabry-Perot Interferometer

- Beam spread degrades performance
 - Beam size

Georgia Institute

off**Tech**molo

- Intensity leaks backward (<16% center intensity)
- Photonic crystal confines beam
 - >98% transmitted center intensity for mode near self-collimation
 - Can control bandwidth for selecting number and intensity of transmitted beams
- Concept extends to other interferometers and bulk optical devices

Photonic crystal

No photonic crystal

Transmitted intensity at center of beam

Georgialnetitur Propagation Effects in Superlattice PCs

- Giant refraction
- Superprism
- Tunable refraction

Georgialnstit Wo Dimensional PC: Triangular Lattice

- Simpler structure than 3D
- Top-down fabrication
- Integration with planar circuits
- Simpler analysis of optical properties than 3D
- Can have full PBG (light in plane of PC)
- Giant refraction effects
- Superprism effects
- Band diagram: Plot of dispersion relationship, ω(k), along irreducible BZ boundary

Georgia Institut Superlattice: Real & Reciprocal Space

- Alternating rows posses different property (Δr , Δn , or both)
- Unit cell definition with two holes per lattice point

Reciprocal Space

- New BZ representation: hexagonal becomes rectangular
- BZ folding
- Symmetry reduction: six-fold to two-fold

- Photonic crystal \rightarrow complex in shape
- Propagation of light normal to the dispersion curve, in direction of energy flow

Superlattice: hole radii, r₁ & r₂, in adjacent rows [i, j], respectively, Lattice vector a
Increasing superlattice strength accomplished by increasing Δn or Δr between rows

 Strength of superlattice defined as: extra dielectric added when
 r₂ made smaller, r₂/r₁ ratio

$$n_{eff} = \frac{n_b A_\delta + n_2 A_2}{A_1}$$
$$= n_b \left(1 - \left(\frac{r_2}{r_1}\right)^2 \right) + n_2 \left(\frac{r_2}{r_1}\right)^2$$

- In Si, for $r_2/r_1=0.857$, $n_{eff}=1.654$ which is $\Delta n=0.654$ between rows of holes
- To increase the strength of the superlattice. The radius of the columns of row *j* is decreased down to $\Delta r_2 = 0.15a$ while r_1 is kept constant

GeorgiaInstitute Effect of SL Strength (r₂/r₁) on Band of Technology Structure (Δr)

TE polarization

- Decreasing r_2 increases dielectric material in structure
- Stronger effect on air bands than dielectric bands
- Shifts bands to lower frequencies
- **Decreases width of PBG**
- Increases band splitting
- Similar effect in dynamic superlattice when changing Δn
- Evolution of a static superlattice band structure with radius ratio

(a) $r_2/r_1 = 1$, (b) $r_2/r_1 = 0.857$, (c) $r_2/r_1 = 0.571$

(d)

- a & b --- Degenerate states at bottom of air band at M-point Δ -lattice
- c & d --- 3s and 3p states of the 2D PC-SL with strength 0.571

(b)

- For $\Delta r = 0$, $(r_2/r_1=1)$, BZ folding scheme straight forward: curves converge to a single point at BZ boundaries.
- Radius modulation $(\mathbf{r}_2/\mathbf{r}_1 < 1)$: curves diverge/repel at BZ boundaries
- Net result: relatively flat curvature in center of BZ with high curvature near BZ boundaries

Georgialnstitute of Technology

- ICP dry etching with Chlorine/ C_4F_6 recipe
- 1 mm² area written using smaller unit patterns
- Lattice constant: *a*=358 nm
- Silicon slab waveguide (SWG)

Triangular Lattice

SL Lattice

- Dips in spectrum filtered and plotted as ω vs. k
- Full 3D FDTD calculations to match structure

Tunable Structures

- Concept:
 - Dynamically change lattice property, i.e. refractive index, while under excitation
- Consequences:
 - Active beam steering
 - Tunable filtering
 - Signal modulation

Superlattice Photonic Crystal Structures Based on Triangular Lattice

• Hybrid – combination of both structures

•

Dispersion Surfaces for First Four Bands of Technology of SSL Structures

Band Structure and Dispersion Georgia Large Area Addressed Static Infiltrated Superlattice **Band Structure** Refraction **Dispersion Contours** *c*_h=2.89 $3p \epsilon = 2.25$ Μ 0.30 unbiased $\varepsilon_{\rm h}$ =2.89 50 **3**p Vormalized Frequency, $artheta_{ m n}$ 40 biased $\varepsilon_{\rm s}$ =2.25 Refraction Angle, $\theta_{\rm f}$ 0.25 30 unbiased 20 10 0.20 *ω*=0.273 0.15 (b)(c)(a) 0.10, -10 0 10 20 30 M M Incident Angle, θ_i

- Changing bias/unbias state changes alignment of LC director \rightarrow changes ε
 - Changes band structure
 - Changes dispersion contours
 - Changes refraction response

Dispersion Contours and Refraction for Georgia Institute of Technology Three SSL Devices -3s Band

• (a & d) EO superlattice, (b & e) Hybrid Static superlattice, (c & f) inter-digitated SL

• For Hybrid Static superlattice, refraction changes from negative to positive with bias $\Delta \theta_r = 96^\circ - of$ the order of 80° for other structures

Georgia Institute of Technology

- Positive refraction →
 'Snell's law' like refraction,
 i.e. n is positive
- Negative refraction $\rightarrow n$ is negative in Snell's law
- Square and Triangular PCs
 → only negative OR only positive at a fixed frequency
- SL PC → Both regimes at a fixed frequency

Dispersion Contours for SSL-Structures & Spectral Dispersion Properties

- TE polarization dispersion contours for SSL structure calculated with PWE method
 - SL strength of 1.0 (solid line) and 0.857 (dashed line)
- FDTD method for SL strength of 0.857 (scattered dots),
- Gray lines show construction lines for a beam of $w_n = 0.3185$ incident from air
- Spectral Dispersion for $r_2/r_1 = 0.857$ for range of w_n with 1% spacing between frequencies (group of lines) 2D slab waveguide structure (scattered plot)

FDTD Visualization of Refraction in SSL

• Investigation of effect coherence on refraction

 $\theta_i = 0^\circ$

Georgia Institute

Normalized frequency = 0.309

 $\theta = 12$

Static superlattice structure

- Static SL PC surrounded by silicon
- Gaussian beam: launched at incident angles of 0 and 12°. Width 24a.
- Beam steering:
 - -40.5° for $\theta_i = 0$
 - 47.15° for $\theta_i = 12^\circ$
- SL parameters $r_1=0.35a$ and $r_2=0.3a$
- SL strength: $r_2/r_1 = 0.875$

- Control Over Dispersion Surface
 - Low Divergence "virtual waveguides"
 - Beam divergence reduced by factor of ~10
 - Optical interconnects
 - Sensor Technologies
 - Fabry-Perot Interferometer
 - Suitable for wavelength selection, beam width control
 - Chemical and Biological Sensing
 - Negative Index Structures
 - Pendry lens: Refractive Index of -1

• Successfully developed new concept of SL PC

Georgia mstit

- Experimentally observed 'band folding' effect
- Demonstrated that SL significantly enhances tunability, by order of magnitude, for refraction & dispersion
- SL introduces unique optical properties and new regimes for beam propagation effects
 - Δr or Δn between adjacent rows of holes creates a SL photonic crystal-Greater sensitivity to Δn by optimization of hole size ratio, r_2/r_1
 - The superlattice lowers the symmetry of the structure causing:
 - BZ folding: Band splitting removal of modal degeneracy
 - Highly curved Dispersion Contours near BZ boundaries
 - Positive and negative refraction
 - Beam steering of > 90 degrees
- Hybrid superlattice enhances tunability of optical properties

Acknowledgements

Research Group

Graduate Students

- Davy Gaillot
- Xudong Wang
- Swati Jain
- **Postdoctoral Researchers**
- Dr. Elton Graugnard,
- Dr. Jeff King
- Faculty & Staff of MiRC

Collaborations with ARL: Drs. D. Morton, E. Forsythe &S. Blomquist

Supported by U.S. Army Research Office under contract MURI project DAAD19-01-1-0603

Thank You!!