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Outline

• Motivation
– New ways to control beam propagation in slab waveguides

– Modify Dispersion Contours thru impact of new structures & 
tunable materials

• 2D Photonic Crystal Band Structures
– Triangular and Square lattices
– Superlattices 
– Non-Linear Structures

• Liquid Crystal Infiltration of 2D PC
• Electro-Optical (EO) materials

• 2D Superlattice Photonic Crystal Waveguides
– Static; Hybrid and E/O superlattice structures; 

• Summary



Optical Routing Using Photonic Crystals

• Conventional waveguide challenges
– Cross coupling between adjacent waveguides
– Difficulties in alignment from outside sources
– Large bend radii necessary for lossless bends

• Properties of ideal waveguides
– Sharp, lossless 90 degree bends
– No coupling between adjacent or crossing waveguides

• Photonic crystal based on line defects
– Many systems, guiding, resonators, drop line filters, etc

• Free-Space Guiding
– Virtual waveguiding 

• Low divergence waveguides: “Virtual Waveguides”
– Free space beam steering

• Refraction based dynamic tuning
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Virtual Waveguide Interconnect System 

• Advantages of “free-space” optics
– No coupling
– Intersections allowed
– Broadband operation

• Advantages of integrated optics
– Confined beams
– No hermetic packaging
– One lithography step

• Disadvantages
– Small feature sizes required 

(beam size ~15a)

1550nm 
8.55µm

1555nm 
9.97µm

1545nm 
7.12µm

• Tunability in these structures will allow fully reconfigurable circuits
• PBG modulation introduces mirrors and wavelength tuning



Beam Steering and Dispersion

• Beam Steering
– Tunable refraction

• Liquid crystal infiltration
• EO material waveguide

– Intersections allowed
– Limited Bandwidth operation

• Dispersion
– Same phenomena as refraction
– Tunable sweeping of light
– Mini-spectrometer!

• Advantages of integrated 
optics
– Confined beams
– No hermetic packaging
– One lithography step

• Disadvantages
– Small feature sizes required 

(beam size ~15a)



Superlattice Photonic Crystal Structures
Based on Triangular Lattice

• Dynamic - liquid infiltration of holes
• Static - holes of different diameter
• Hybrid – combination of both structures
• Tunable Static – large area addressing
• Tunable EO Static SL – large area addressing

Triangular Lattice Dynamic Superlattice

Static Superlattice
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Relationship Between
Real & Reciprocal Space for SL

Reciprocal Space
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• Alternating rows posses different property (∆r, ∆n, or both)
• New unit cell definition with two holes per lattice point
• New BZ representation: symmetry reduction, hexagonal becomes rectangular: BZ folding



BZ folding in Reciprocal Space

• Hexagonal BZ representation becomes rectangular due to BZ folding



Static Superlattice Photonic Crystal
Superlattice Strength: r2/r1

• Superlattice: hole radii, r1 & r2, in adjacent rows [i, j], respectively, Lattice vector a
• Increasing superlattice strength accomplished by increasing ∆r
• Thus, r2 decreased relative to r1.

• Strength of superlattice defined as: 
extra dielectric added when 
r2 made smaller, r2/r1 ratio

• In Si, for r2/r1=0.857, neff = 1.654 which is ∆n = 0.654 between rows of holes



Effect of SL Strength (r2/r1) on Band 
Structure

• Decreasing r2 increases 
dielectric material in structure

• Stronger effect on air bands 
than dielectric bands

• Shifts bands to lower 
frequencies

• Decreases width of PBG

• Increases band splitting

• Similar effect in dynamic 
superlattice when changing ∆n

TE polarization

• Evolution of a static superlattice band structure with radius ratio
(a) r2/r1 = 1, (b) r2/r1 = 0.857, (c) r2/r1 = 0.571



Magnetic Field Power Distribution

TE polarization

• Degenerate modes
• Same energy 

density in each 
mode

Band 3p Band 3p

• Non-degenerate 
modes

• Band 3p power  > 
2X Band 3s

Band 3s Band 3s



Static Superlattice PC: Dependence of 
PBG & BS on Hole Radii Ratio

• Dependence of PBG & Band Splitting on  radius ratio:
– For radii of r1 between 0.30a and 0.40a
– Trade off between Gap width and band splitting 
– Band separation strong for r2/r1 between 1.0 and 0.55, still have a PBG.



Dispersion Contours: Dependence on r2/r1

r2/r1=1.0
ωn= 0.435
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• For ∆r = 0, (r2/r1=1), BZ folding scheme straight forward: curves converge to a 
single point at BZ boundaries.

• Radius modulation (r2/r1<1): curves diverge/repel at BZ boundaries
• Net result: relatively flat curvature in center of BZ with high curvature near BZ 

boundaries



Dispersion Surfaces for First Four Bands of
SSL Structures

Band 3pBand 3s



Dispersion Contours for SSL-Structures & 
Spectral Dispersion Properties

• TE polarization dispersion contours for SSL structure calculated with PWE method 
– SL strength of 1.0 (solid line) and 0.857 (dashed line) 

• FDTD method for SL strength of 0.857 (scattered dots), 
• Gray lines show construction lines for a beam of wn = 0.3185 incident from air 
• Spectral Dispersion for r2/r1 = 0.857 for range of wn with 1% spacing between 

frequencies (group of lines) 2D slab waveguide structure (scattered plot)



Dynamical Tunability: Voltage Bias
Band Structure Effects

• Bias of 6 V/µm
• Increase n from 2.49 to 2.598 

(∆n~ 0.11)
• Moves bands to lower 

frequencies with bias
• Equifrequency line intersects 

bands at different points
• Dispersion surface different for 

unbiased/biased cases

Γ         Μ          Υ          Γ           Χ          Μ

r2/r1=0.571



Dispersion Contours: Bias Effects

r2/r1=0.571r2/r1=1.0

• Equifrequency plane cuts across two different areas of the 
dispersion surface

• The different areas have similar contours, but they are shifted.
• Different contours results in different optical responses

– Refraction/Beam steering
– Switching/Modulation
– Dispersion



Different Biasing Schemes for
Tunable Device Structures

EO Static SL -- uniform large area bias

Inter-digitated SL – row 
biasing

Hybrid (LC infiltrated) SL 
-- uniform large area bias



Band Structure, Dispersion & Refraction
for LC Infiltrated Static Superlattice

Band structure, Dispersion contours & Refraction response of 3p band 
(normalized frequency of wn=0.273)

Tunability of refraction angle 
∆θr ~ 55o, EO SSL (10o)
∆θr ~ 55.3o, infiltrated SSL (14o)
∆θr~ 54.3o, for Inter-digitated SSL
Tunability limited by relative flat DC

Large Area Addressed SSL
r2/r1 = 0.875
wn=0.273)



Dispersion Contours and Refraction for
Three SSL Devices -3s Band

• For Hybrid Static superlattice, refraction changes from negative to positive with bias
∆θr = 96o – of the order of 80o for other structures

• (a & d) EO superlattice,  (b & e) Hybrid Static superlattice, (c & f) inter-digitated SL 
Case 1: larger holes unbiased (eh1 = 2.89), smaller holes biased (eh2 = 2.25). .



Dependence of Refraction Angle on 
LC Refractive Index & Angle of Incidence

• Hybrid large area biased SSL structure

• Band 3s
• Normalized frequency of 0.264
• Incident angles: 0 – 35o.
• LC index 2.2 to 2.9 
• Dependence of θr slower than 3p 

∆θr almost twice than in 3p band

• Band 3p
• Normalized frequency of 0.273
• Incident angles: -10 to 35o.
• LC index 2.2 to 2.9



FDTD Visualization of Refraction Behavior in SSL

• Investigation of effect coherence on refraction 

Static superlattice structure 

• Static SL PC surrounded by silicon
• Gaussian beam: launched at incident angles 

of 0 and 12o. Width 24a.
• Beam steering: 

• -40.5o for θi = 0 
• 47.15o for θi = 12o

• SL parameters r1=0.35a and r2=0.3a
• SL strength: r2/r1 = 0.875



Virtual Waveguide Interconnect System 

1550nm 
8.55µm

1555nm 
9.97µm

1545nm 
7.12µm

• Advantages of free-space optics
– No coupling
– Intersections allowed
– Broadband operation

• Advantages of integrated optics
– Confined beams
– No hermetic packaging
– One lithography step

• Disadvantages
– Small feature sizes required 

(beam size ~15a)



Beam Properties
Divergence Angle of 2D Gaussian Beam

A Gaussian beam 
spreads in the paraxial 
approximation in an 
isotropic material as:

The divergence 
determines the 
coupling efficiency into 
the photonic crystal
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2D Photonic Crystals
Square Lattice

• Band Diagram
– Boundaries of the 

band surface
– Identification of 

band gaps 

• Allowed Wave Vector Curve
– Equifrequency curves of 

the band surface
– Identification of  

propagation effects
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• Square lattice
– Hole diameter
– Refractive index



Advantages of Controlling 
Dispersion Contours
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• Canceling of Z-component leads to self-collimation
• Effective negative index for the energy propagation obtained
• PC lattice designed to produce dispersion contours with a wide range of curvatures

– Concave –produces normal propagation - a defocusing effect
– Straight – produces a collimated beam guiding
– Convex – produces a negative index for sub wavelength focusing

• Collimation exploits same 
phenomena as sub-wavelength 
focusing



Curvature Reversal Near Brillouin Zone
Boundaries

• Materials
– Pillars – ε = 11
– Matrix – ε = 2

• Square Geometry
– a = 403nm
– d = 0.4a = 161nm

0.28 
0.26 
0.24

Band Gap
Region of interest

Matrix/Cladding Pillars

• Evolution from concave to flat to convex
dispersion contour with increasing 
frequency along Τ - M direction

• Good confinement: Robust design
• Dispersion contours fitted by effective

index model



FDTD Simulation of Self-Collimated Beam

• Good confinement of Gaussian beam 
• Beam spread decreased by an order of 

magnitude or more with beam sizes as 
small as 5-10 λ0

• Simulation comparing isotropic silica vs
self-collimating photonic crystal 
– Square lattice
– Silicon pillars (ε=11)
– Silica matrix (ε=2)
– r=0.2a;  a=403nm;  λ=1.55µm

• Applications include:
– Virtual waveguide interconnect system
– Miniaturization of conventional optical 

components for small beams

Matrix/Cladding Pillars



Test Structure Design for Collimation

• Principle of operation
– Gaussian like input from input 

waveguide
– Beam spread observable from 

number of lit up output waveguides

Input Waveguide
Photonic Crystal

Small spacer

Output Waveguides

• Quality requirement
– Smooth surfaces (<Ls/20)
– Anisotropic sidewalls (<5°)
– Uniform hole sizes in photonic 

crystal (<5% locally)

Fiber

Cleaved surface Region measured 



Direct Top-View Measurements

Input from the fiber Propagation thru the 
photonic crystal

Output from the 
waveguides

Photonic Crystal

• Infrared camera utilized to view scattered light from the device



Test Structures of “Virtual Waveguide”

• Input waveguide, photonic crystal, fan of waveguides for analysis
• Examples of photonic crystal fabrication.



Measurements of Virtual Waveguide Effect

• Test structure with no photonic 
crystal

Χ

• Test photonic crystal structure 
exhibiting “virtual waveguide”
effect: with Prof. W. Park, UC

• “Virtual waveguiding” demonstrated
• Recently calculated properties of LC infiltrated structure –

negative index focusing effect predicted: ~ -20
• Also tune structure for different wavelengths 



Summary

• Investigated Static and Dynamic Superlattice PC configurations.
– Structure and index tuning introduces new modes

• Drastic changes in band structure and dispersion surface
• Tunable refraction angle changes over 80o

• Static Superlattice increases control over optical properties of PCs.
– Refraction at normal incidence, negative to positive refraction observed

• Hybrid superlattice enhances tunability of optical properties of PCs.
– Enhances and combines properties of static and dynamic SL PCs 

• Issue is beam divergence – addressed by self-collimation
• Low Divergence “virtual waveguides” demonstrated

– Focus tuning predicted in these structures
• Investigating ways to combine self-collimation with tuning
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