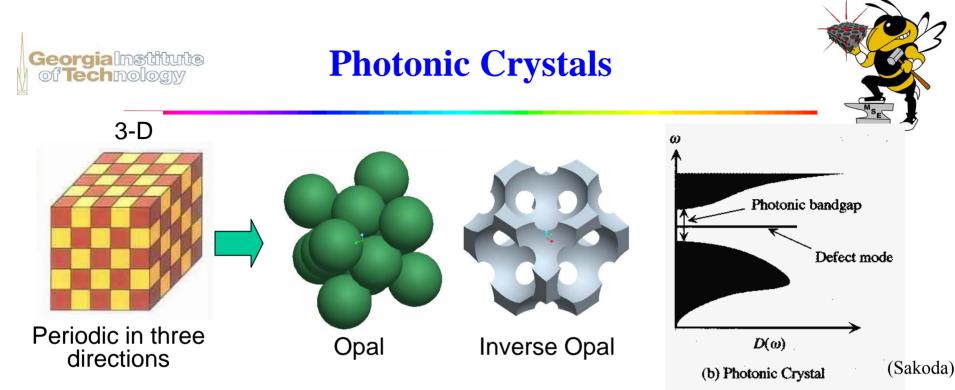


Luminescent and Tunable 3D Photonic Crystal Structures

Christopher J. Summers, E. Graugnard, D. Gaillot & J. S. King

School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332


7th Mediterranean Workshop and Topical Meeting "Novel Optical Materials and Applications" Cetraro, Italy May 30th - June 3rd, 2005

Outline


- Introduction: Photonic Crystals
 - Requirements for highly luminescent materials, PCP
- Review of Progress made to get PCP
 - Luminescent materials, ZnS:Mn
 - Higher Index materials, TiO₂
 - Multilayer Combined Infiltrations: ZnS:Mn + TiO₂
- Limitations of these structures:
 - No Full PBG, Limitations of Geometry
- Non-Close Packed Opal Structures
 - Theoretical predictions
 - Experimental realization
- Summary

- Photonic Crystal Periodic modulation of dielectric constant
- Formation of Photonic Band Structure and "Photonic Band Gaps" (PBGs)
- Properties depend on ω , a, the ratio of dielectric constants and structure
- Changing dielectric constant of single "unit" → Dielectric doping (defect mode)
- Luminescent 3D PC microcavity structures offer potential for controlling: emission wavelength efficiency time response threshold properties
- LEDs, Lasers, PC- Phosphors (PCP)

Band Diagrams: FCC, Inverse FCC, Georgialnetitute & Diamond-Analog Peanut Structures

- Opal (FCC); Pseudogap between 2nd & 3rd bands
 - High symmetry spherical building block
 - Large filling fraction of high-n material
- Inverse Opal
 - 2.5% band gap between bands 8 & 9
 - High symmetry spherical building block
 - Low filling fraction of high-n material
 - Minimum $n_c = 2.8$
 - Higher PBG if conformal coatings
- Diamond-Analog Peanut
 - >11.2% band gap between 2nd & 3rd bands
 - Minimum $n_c = 2.4$
 - No simple fabrication method
- Chiral and other structures
 - 25% band gap
 - Complex fabrication methods

Challenges for 3D PCPs (Visible Regime)

Lattice Constant

- Three-dimensional periodic structures difficult to fabricate at the nanometer length scale necessary for operation in visible & near-IR regions

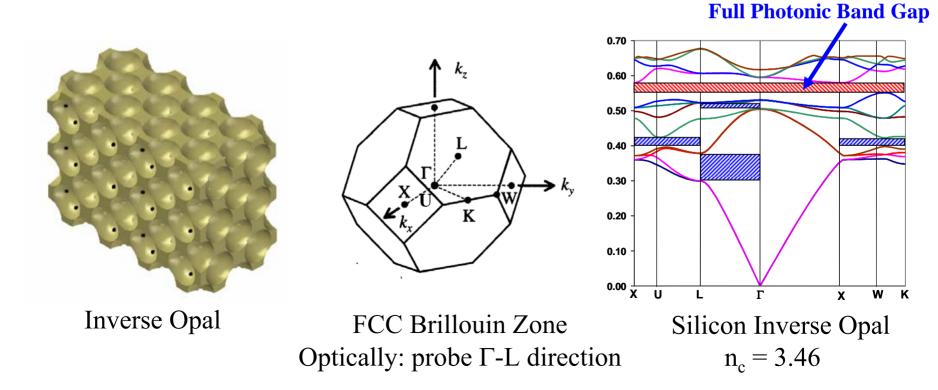
Refractive Index Contrast & Optical Properties

- Few materials with high refractive index, (which leads to PBG effects) and highly transparent and luminescent in the visible region:
 - ZnS n = 2.55 2.25
 - $TiO_2 n = 3.2 2.7$, from 400 to 750 nm
 - GaP, SnS₂ and TaN limited coverage in visible

Crystal Structure

- Diamond structure, calculated to have the widest band gap and best potential for realizing band gap effects, is impossible to form by traditional self-assembly

Filling Fraction of Opals


- Optimum structures have low filling fraction of high index material
- Traditional self-assembly of spheres leads to structures with maximum 26% air
- Inverse opals have high index contrast and low filling fractions $\sim 74\%$ air

Photonic Crystals: Inverse Opals

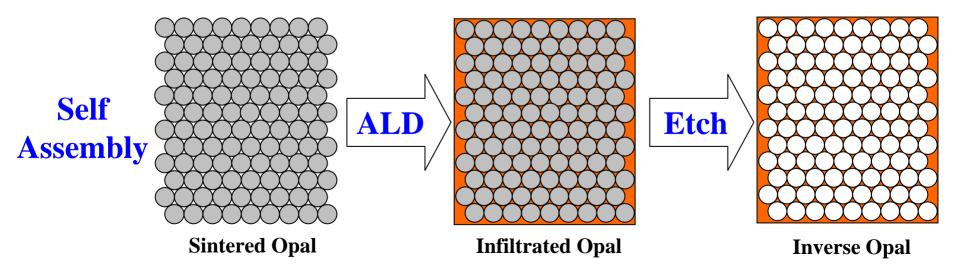
- Inverse Opal- only current experimentally practical 3D structure
- Full PBG requires high refractive index contrast (> 2.8)
- Lattice constant ~ 140-500 nm (for visible wavelengths)
- High filling fractions & crystalline quality, conformal coatings required

• Use ALD to form infiltrated & inverse opal photonic crystal phosphors.

- Demonstrate PBG and its effects on emission properties.

- ALD advantages: monolayer control, conformal, flexible
- ZnS:Mn used for initial demonstration: well studied ALD material
 - Insufficient index (n~2.5) for full PBG
 - Exhibits pseudo-gap behavior in (111) direction
- Investigate TiO₂ to form PBG, transparent, n > 3.0 for $\lambda < 450$ nm
- Combine ZnS:Mn & TiO₂ into multi-layer films, luminescence & PBG
- Characterization: SEM, specular reflectance, PL

- Study impact of band structure on reflectance and PL


- Investigate modifications to Inverse Opals to enhance performance
 - Photonic band width, tuning, etc

Inverse Opal Fabrication: Infiltration with ALD

- Provide periodicity using self-assembled film (opal template)
 - Sedimentation of monodispersed colloidal SiO_2 in a confinement cell¹ on silicon, quartz, or coated substrates, followed by sintering.
 - 10 µm thick (111) oriented, polycrystalline, FCC film.
- Infiltrate interstitial space with high refractive index material (ALD).
- Infiltrate can be a luminescent material to form a PCP.
- Etch SiO₂ spheres with buffered HF, forming inverse opal.
- Dielectric defect addition into templates.

(1) Y. Xia, B. Gates, and S. H. Park, Journal of Lightwave Technology, 17 (1999) 1956-1962.

• Thin film surface-controlled growth technique that uses sequential application of reactants to promote monolayer-by-monolayer growth – very conformal coverage

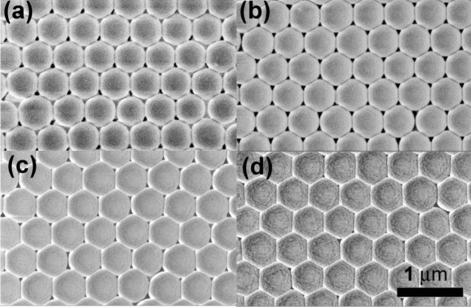
ALD Growth of ZnS:Mn

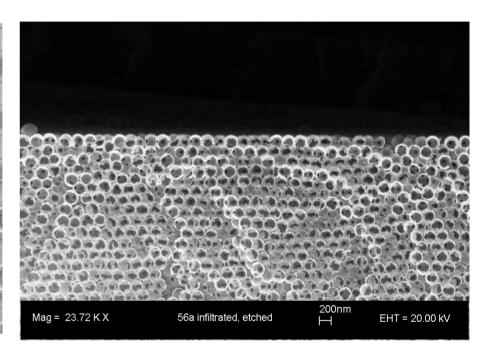
Georgialnstitute

(a) ZnCl₂ (MnCl₂)pulse: several monolayers adsorb on substrate
(b) N₂ purge: excess reactant desorbs, monolayer remains

(c) H₂S pulse: reacts w/ ZnCl₂ forming ZnS
(d) N₂ purge: removes excess H₂S, and HCl

• Similar Process for TiO₂: using TiCl₄ and H₂O, Applicable to semiconductors, oxides & metals


* ZnS:Mn depositions performed at US. Army Research Lab, Adelphi, MD



Scanning Electron Microscopy: ALD of ZnS:Mn

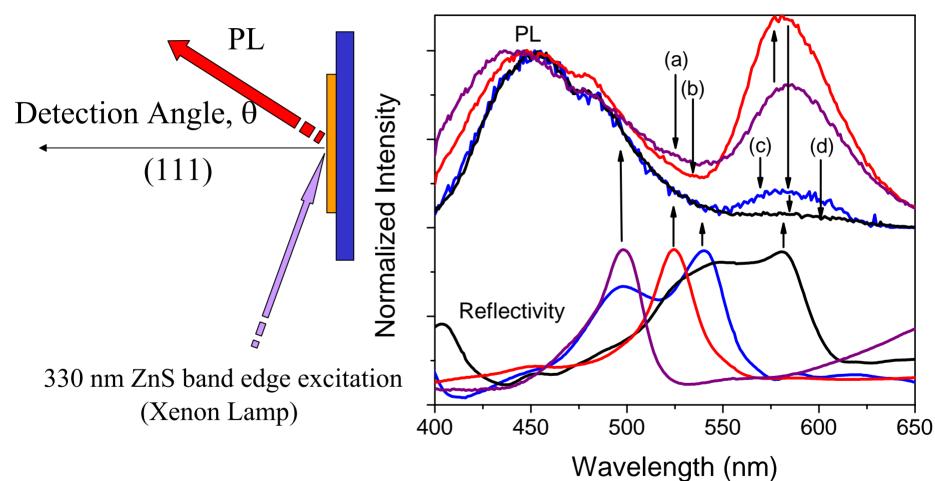
(111)

446 nm opal infiltrated with ZnS:Mn at 500°C.

SEM images of (111) surface of SiO2 466 nm opals after infiltration with (a) 2.5, (b) 5, (c) 10, and (d) 20 nm of ZnS:Mn.

220 nm ZnS inverse opal deposited at 500°C

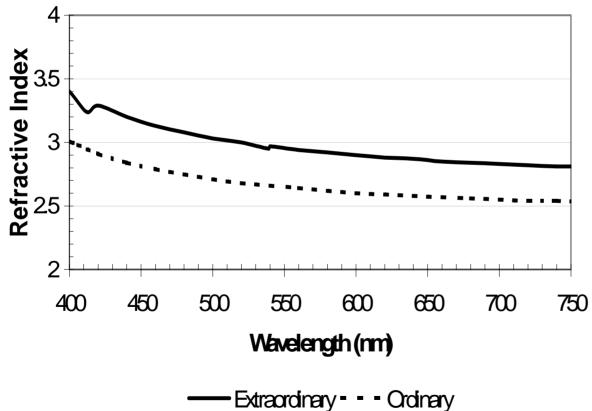
X-ray data confirmed material composition: - grain sizes 2 - 5 nm


Photoluminescence Modification 466 nm ZnS:Mn/SiO₂ Opal

Georgialms

MiTech

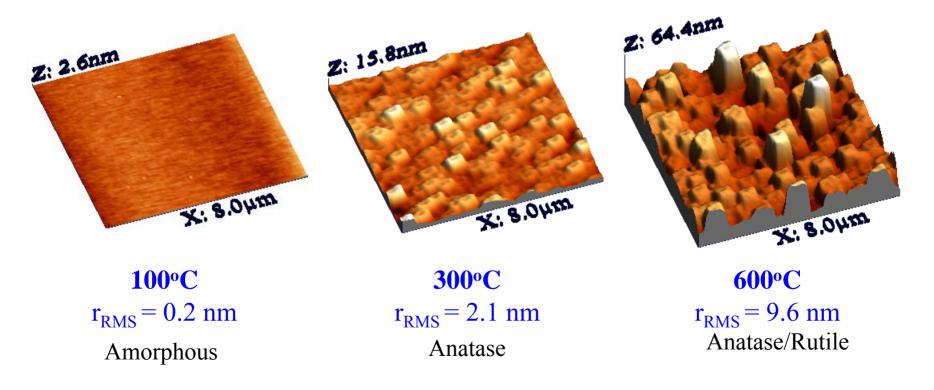
inivite



• 466 nm ZnS opal infiltrated with 2.5, 5.0, 10.0 and 20.0 nm of ZnS

• Titania: one of few materials that meets both refractive index and transparency requirements for the existence of a full-PBG in the inverse FCC structure

Polymorphs of titania Brookite – index 2.3 Anatase – index 2.65 Rutile → high temp, high index polymorph >2.9 for wavelengths shorter than 450 nm

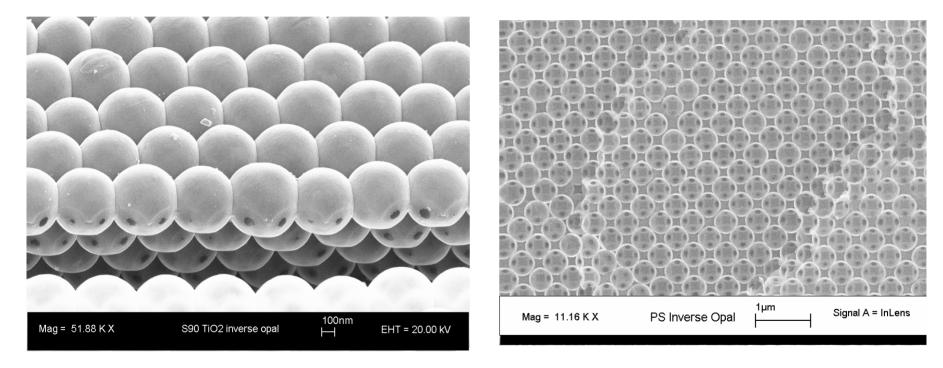

Refractive Index versus Wavelength for Rutile Structure

Thin Film Growth: Film Morphology – AFM

- Growth of polycrystalline films result in surface roughening, which increases with increased deposition temperature.
- Surface roughness prevents direct high temperature ALD in opals.

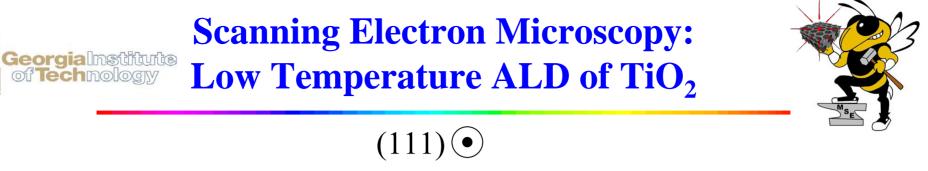
AFM images acquired with a Park Instruments Inc. CP Autoprobe and processed with WSxM 3.0 from Nanotec Electronica S.L.

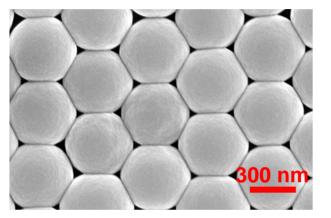
TiO₂ Thin Film Growth: Summary

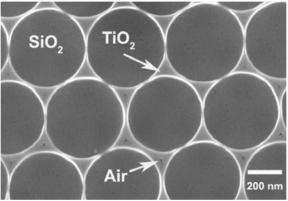


- Growth at 100°C
 - Amorphous film
 - Lowest surface roughness: ~0.2nm
 - Produces the most conformal films
- Growth at 300°C
 - Anatase crystal structure
 - Growth rate reaches saturation at pulse lengths <150ms
- Growth at 600°C
 - Inconsistent film quality despite uniform growth rate
 - Anatase/Rutile Mixed Phase --- from 29 to 78%
- Low temp ALD deposition followed by 400-500 C/2 hr anneal
 - Smooth films with higher index -- mixed Anatase/Rutile phases

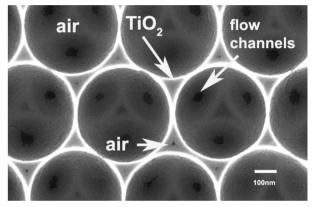
(111) Angled plane


(100) plane

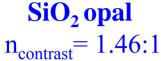



466 nm opal fully infiltrated with TiO₂ grown at 100 C

470 nm TiO₂ inverse opal formed on PS at 80 C

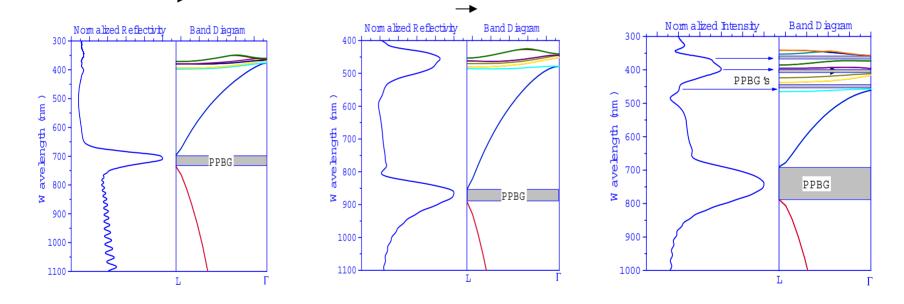

TiO₂ infiltration at <100°C + anneal, produces very smooth conformal surface coatings

Cross-sections


433 nm opal infiltrated with 20 nm of TiO_2

433 nm opal infiltrated with TiO_2

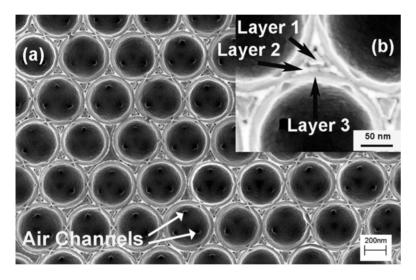
433 nm TiO_2 inverse opal

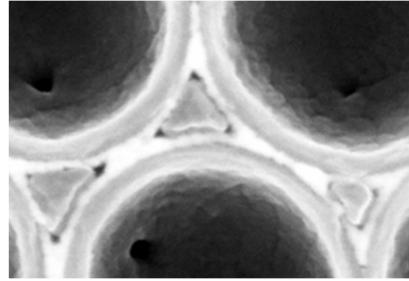

TiO₂ infiltration at 100°C produces very smooth and conformal surface coatings.

Georgialinstitute of Technology SiQ. and SiQ. an

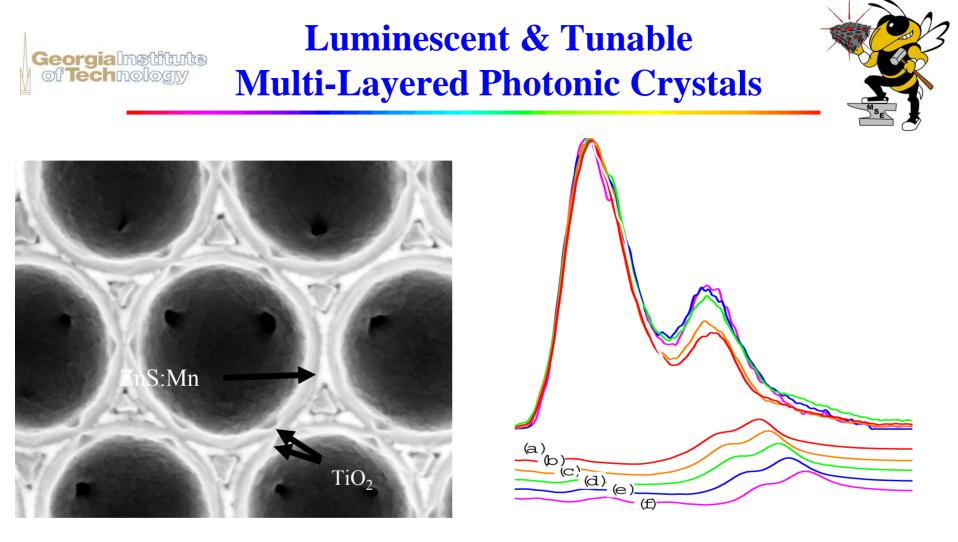
 SiO_2/TiO_2 opal $n_{contrast}=2.5:1.46$

- Inverse opal full PBG occurs between high energy bands.
- Shift of PPBG indicates ~95% infiltration.


Band diagrams calculated using MIT Photonic Band software package. (Plane wave expansion method)



Multi-Layered Inverse Opal: TiO₂/ZnS:Mn/TiO₂



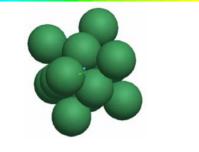
• SEM of TiO₂/ZnS:Mn/TiO₂ inverse opal, and (b) high magnification of layered region

• 330 nm sphere size

Change in PL spectrum as "Back-fill" with additional layers of TiO₂

Thicknesses of ~ 1, 2, 3, 4 and 5 nm

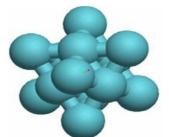
Photoluminescence intensity increases by 108%

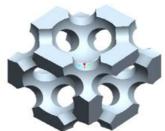


- Achieved fabrication objectives:
 - Luminescent ZnS:Mn inverse opals fabricated by ALD
 - Photonic Crystal Phosphor!
 - High index ultra-smooth TiO_2 inverse opals fabricated by ALD
 - Multi-layer inverse opals fabricated by combining ALD of ZnS:Mn and $\rm TiO_2$
 - Independent control of refractive index and luminescence
 - Modification of luminescence with high-order photonic bands
 - Controlled ALD allowed 108% tuning of luminescence intensity from a multi-layer PCP
- Still small to no full photonic band gap
- Limited volume available for infiltration
- Need new structures & geometries for improved & tunable devices!

Georgialnetitute of Technology Non-Close Packed Inverse Opals

Close-packed structures





Non-close-packed structures

(Busch & John, PRB (1998)

Doosje et al., J. Opt. Soc. Am. B, V17,(2000))

Air network in an inverse NCP opal

Dielectric network in an inverse NCP opal

- NCP: 2 parameters define the geometry of the structure instead of one.
 - Radius of sphere: R/a
 - Radius of connecting cylinder: Rc/a --- (a is the cubic lattice constant)
- Rc was proven to greatly affect gap size compared to R.
 - Increase in PBG with Rc
 - Reduced refractive index requirement to form PBG

3D Opal-Based NPCs

Highly Conformal Non-Close-Packed "Peanut-Like" Inverse Opal

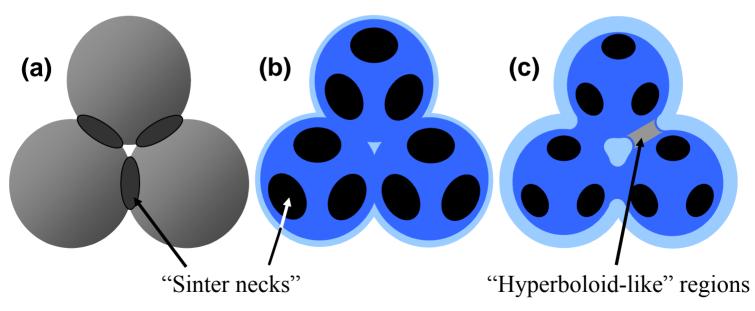
Initial Inverse Backbone "Peanut-like" connections

Georgia Institute

Backfilled Layer

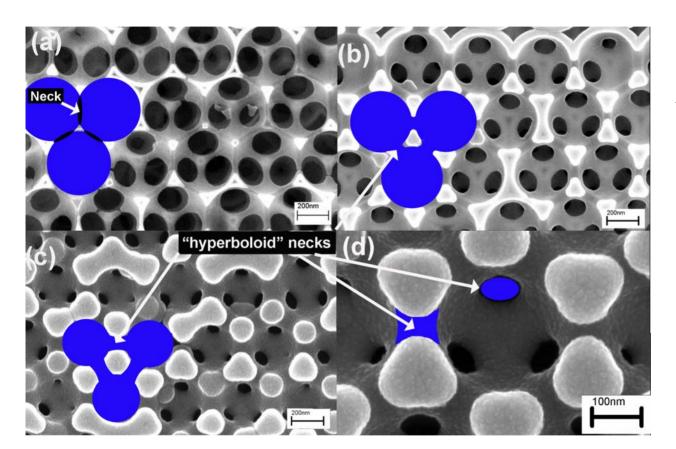
- Combination of heavy sintering and conformal infiltration after removal of template allows higher geometry and PBG tunability.
- Desired geometries can be achieved by a heavy sintering treatment yielding a high degree of control over dielectric/air backbone.
- Backfilling infiltration yields "peanut-like" connections not "tube-like" connections due to conformal deposition.
- Computations predict gap widths as high as 7.5% for Si
- Refractive index contrast requirement of n~2.7 for PBG

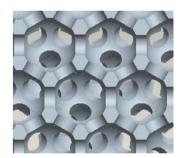
Fabrication possible !!!!



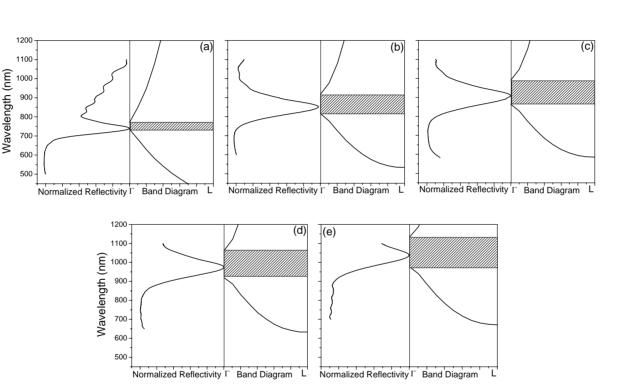
NCP: Sintered Fabrication Route

Presintering (PSNCP)

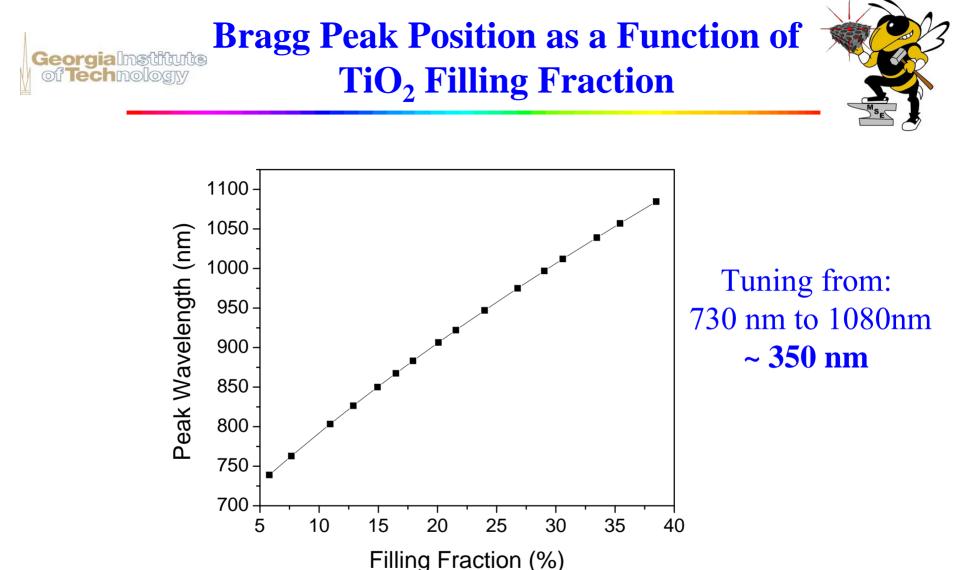

- Sinter opal prior to infiltration
 - Increases diameter of necks between spheres
 - After infiltration, connectivity pores are larger.
- Infiltrate with TiO₂
- Etch SiO_2 with HF to form inverse NCP opal
- Back-fill with TiO₂, thus creating air cylinders


(a) heavily sintered opal template (b) resulting inverse opal and (c) non-close-packed inverse opal after ALD backfilling.

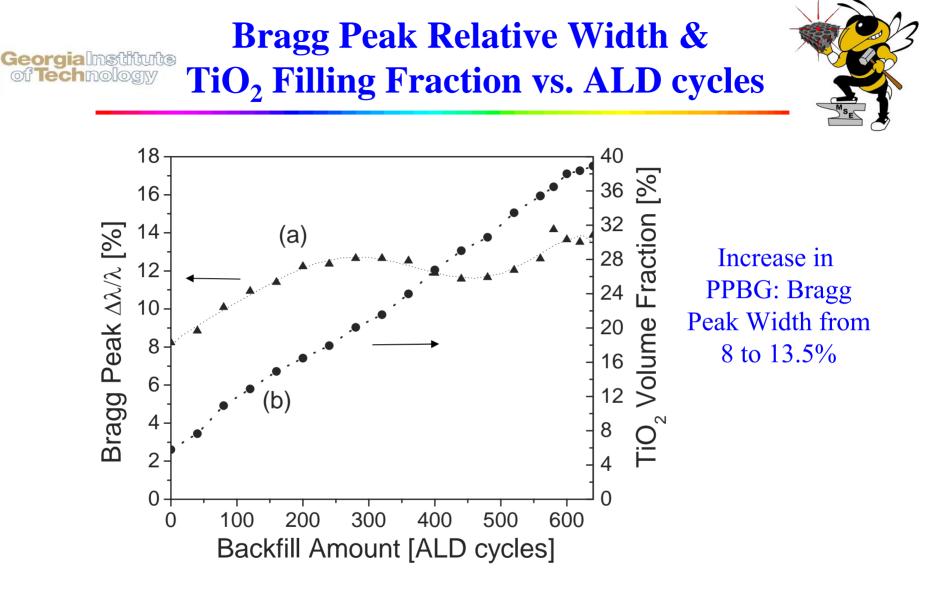
Georgia Institute SEM of (111) Plane of Ti₂O NCP Opal



Optimized Theoretical NCP Structure



(a) TiO₂ inverse opal, formed from a heavily sintered 460 nm SiO₂ opal,
(b) Non-close-packed inverse opal formed after 240 TiO₂ ALD backfilling cycles
(c) Non-close-packed inverse opal formed after 560 TiO₂ ALD backfilling cycles
(d) Higher magnification of structure


Georgia Institute Reflectivity and PBG Calculations

- Comparison of reflectivity spectra with calculated positions of 2nd & 3rd photonic bands of:
 - (a) the 5.9% filling fraction TiO_2 NCP inverse opal and after backfilling with
 - (b) 160 (c) 280, (d) 400, and (e) 520 ALD cycles, respectively.
- For all calculations n_{an} = 2.65, n_{am} = 2.45. (15°). Longer sintering time yields larger interconnecting pore diameter

• Bragg peak (Γ -L PPBG) as a function of the TiO₂ backfilling fraction (New Technique gives further ~2X)

- Bragg peak (Γ -L PPBG) relative width ($\Delta\lambda/\lambda$) (left axis) and the corresponding TiO₂ filling fractions (right axis) as a function of number of ALD cycles
- Backfilling is $\sim 40\%$ of available volume

Summary

- ALD effective infiltration method for fabricating inverse opal PCs.
 - >95% infiltration of pore volume achieved for ZnS and TiO₂
 - PPBGs demonstrated in inverse ZnS, TiO₂ & multilayered PCs luminescent & high index materials
 - Reflectance agrees well with theory.
- Strong PL modulation demonstrated in ZnS:Mn
 - Well correlated with reflectance/PPBGs
- Practical pathway to grow complex *luminescent* photonic crystal structures and optical microcavities.
- Developed Non-Close Packed multi-layered PCs
 - Highly Tunable Reflectance over twice initial wavelength
 - Enhanced bandwidth by approximately 50%
- Future Work Extension to:
 - Luminescent & dynamically tunable devices: 3D photolithographic derived structures: Defect Microcavities Modes: 2D PCs

Acknowledgements

Research Group

Graduate Students

- Curtis Neff
- Tsuyoshi Yamashita
- Davy Gaillot
- Xudong Wang
- Swati Jain

Postdoctoral Researchers

• Elton Graugnard, Jeff King

Collaborations

- Drs. D. Morton, E. Forsythe, S. Blomquist, W. Park and I. C. Khoo
- U.S. Army Research Office MURI Contract# DAAA19-01-1-0603

Thank You!