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Introduction:

— PC superlattices
e ‘Dynamic’
o ‘Static’
— Conseqguences of superlattice
e Detalls of the structure

e Results: Ar and bias/unbias
— Band structure
— Equifrequency contours

 Refraction effects
e Conclusions
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Dynamic Superlattice ‘Static’/Patterned
Superlattice

 Modulations in lattice between rows

— ‘Dynamic’: Row addressing scheme to modulate n
(Park et al., PECS IV 2002)

— ‘Static’: Modulation hardwired into device architecture

« Pattern ‘static’ SL in EO material to introduce tunability of
; optlcal properties
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Reciprocal Space

* New unit cell definition with two
holes per lattice point

 New BZ representation:
hexagonal becomes rectangular

« BZ folding
 Symmetry reduction
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» Triangular photonic crystal patterned in EO material, i.e. PLZT,
to introduce tunable properties. (Scrymgeour et al. APL, 2003,
Xiong et al. JQE 2002)

« A different idea: Pattern a static superlattice into PLZT
 Row i, row j holes have radius ry, r, respectively

e r, held constant while r, decreased

« Superlattice ‘strength’ increases as ratio r,/r; decreases
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Superlattice Strength:
Effective Index of Row j Holes

Consider index of hole

weighted by the area of the I O Q
hole

Average amount of material i i
added to structure by FOW ... @ @ 8
reducing r, hole over the AF,

area of r, hole
Result is the ‘effective index’
of the hole

Quantitative value of

superlattice strength for npAs + noAs

comparison with dynamic  Teff = A

superlattice 1 , ;
For r,/r;,=0.857, n4=1.395 . 1 _ T2 r2
which is An=0.395 between = r T2 r

rows of holes
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Band Structure: Ar Effects
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« Decreasing r, increases amount of material in structure

o Stronger effect on air bands than dielectric bands
« Shifts bands to lower frequencies
 Decreases width of PBG
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» For no radius difference, BZ folding scheme is straight forward
and curves converge to a single point at BZ boundaries.

« Radius modulation causes curves to diverge/repel at BZ
boundaries -- ‘MQW effect'.

* Net result: relatively flat curvature in center of BZ with high
curvature near BZ boundaries
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Band Structure: Bias Effects
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Bias of 6 V/um

Increase n from 2.49 to
2.598 (An~ 0.11)

Moves bands to lower
frequencies
Equifrequency line
Intersects bands at
different points

Dispersion surface
‘looks’ different for
unbiased/blased cases
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Equifrequency Contours: Bias
Effects
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» Equifrequency plane is sectioning two different areas of the
dispersion surface
* The different areas have similar contours, but they are shifted.
» Different contours results in different optical responses
— Refraction/Beam steering
— Switching/Modulation
1 — Dispersion
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k-vector Diagrams

M Construction e Outlined by Russell et al.
x i bonstructionfine 1996 and Kosaka et al. PRB
el 1998

* Analysis done in k-space

« Tangential component of
incident beam conserved at
Interface

e Conservation condition
satisfied at intersection of
construction line with EFC

* Refraction angle determined
by curvature of EFC

- * Final direction of Poynting
Incident beam — vector is normal to EFC at

Tangential component point of intersection

Interface line
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Refraction Results

r,/r;=0.571

%0 * Bias changes n which

50 shifts the EFCs

40 o At ~14° incident angle,
o 5 ~55° change In
g N refraction angle
3 * Increase in effect over
g " biased triangular lattice
Q 0 X : .
o e Refraction occurs at

-10 + _ zero incident angle

w ,=0.366
20  Two regimes of
30 refraction: negative and

-10 0 10 20 30 positive

Incident Angle
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Conclusion

A modulation in hole radii between adjacent
rows of holes creates a superlattice.

* The superlattice lowers the symmetry of the
structure causing:
— BZ folding
— Band splitting at BZ boundaries
— Highly curved EFCs near BZ boundaries

« Tunabillity of refraction >55° with An~ 0.11

» Greater sensitivity to An can be possible
through optimization of hole size ratio, r,/r,
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