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Photonic Crystal Superlattices

• Modulations in lattice between rows
– ‘Dynamic’: Row addressing scheme to modulate n 

(Park et al., PECS IV 2002)
– ‘Static’: Modulation hardwired into device architecture

• Pattern ‘static’ SL in EO material to introduce tunability of 
optical properties
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Consequences of Superlattice

Γ Χ

ΜΥ

b2

b1

Real Space

a
a2

a1

Reciprocal Space

• New unit cell definition with two 
holes per lattice point

• New BZ representation: 
hexagonal becomes rectangular

• BZ folding
• Symmetry reduction

BZ Folding
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Device Structure

Row i

Row j

• Triangular photonic crystal patterned in EO material, i.e. PLZT,
to introduce tunable properties. (Scrymgeour et al. APL, 2003,
Xiong et al. JQE 2002)

• A different idea: Pattern a static superlattice into PLZT
• Row i, row j holes have radius r1, r2 respectively
• r1 held constant while r2 decreased
• Superlattice ‘strength’ increases as ratio r2/r1 decreases
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Superlattice Strength: 
Effective Index of Row j Holes

• Consider index of hole 
weighted by the area of the 
hole

• Average amount of material 
added to structure by 
reducing r2 hole over the 
area of r1 hole

• Result is the ‘effective index’
of the hole

• Quantitative value of 
superlattice strength for 
comparison with dynamic 
superlattice

• For r2/r1=0.857, neff=1.395 
which is ∆n=0.395 between 
rows of holes
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Band Structure: ∆r Effects

• Decreasing r2 increases amount of material in structure
• Stronger effect on air bands than dielectric bands
• Shifts bands to lower frequencies
• Decreases width of PBG
• Increases band splitting at high symmetry points

TE polarization
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Equifrequency Contours: ∆r

r2/r1=0.571
ωn= 0.366

r2/r1=1.0
ωn= 0.435
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• For no radius difference, BZ folding scheme is straight forward 
and curves converge to a single point at BZ boundaries.

• Radius modulation causes curves to diverge/repel at BZ 
boundaries -- ‘MQW effect’.

• Net result: relatively flat curvature in center of BZ with high 
curvature near BZ boundaries
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Band Structure: Bias Effects

r2/r1=0.571
• Bias of 6 V/µm
• Increase n from 2.49 to 

2.598 (∆n~ 0.11)
• Moves bands to lower 

frequencies
• Equifrequency line 

intersects bands at 
different points

• Dispersion surface 
‘looks’ different for 
unbiased/biased cases

Γ         Μ          Υ          Γ           Χ          Μ
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Equifrequency Contours: Bias 
Effects

r2/r1=0.571r2/r1=1.0

• Equifrequency plane is sectioning two different areas of the 
dispersion surface

• The different areas have similar contours, but they are shifted.
• Different contours results in different optical responses

– Refraction/Beam steering
– Switching/Modulation
– Dispersion
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k-vector Diagrams

• Outlined by Russell et al.
1996 and Kosaka et al. PRB
1998

• Analysis done in k-space
• Tangential component of 

incident beam conserved at 
interface

• Conservation condition 
satisfied at intersection of 
construction line with EFC

• Refraction angle determined 
by curvature of EFC 

• Final direction of Poynting 
vector is normal to EFC at 
point of intersection

Incident beam
Tangential component

Refracted beam
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Refraction Results

• Bias changes n which 
shifts the EFCs

• At ~14° incident angle, 
~55° change in 
refraction angle

• Increase in effect over 
triangular lattice

• Refraction occurs at 
zero incident angle

• Two regimes of 
refraction: negative and 
positive

r2/r1=0.571
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Conclusion

• A modulation in hole radii between adjacent 
rows of holes creates a superlattice.

• The superlattice lowers the symmetry of the 
structure causing:
– BZ folding
– Band splitting at BZ boundaries
– Highly curved EFCs near BZ boundaries

• Tunability of refraction >55° with ∆n~ 0.11
• Greater sensitivity to ∆n can be possible 

through optimization of hole size ratio, r2/r1
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