

Photonic Crystal Superlattices

Curtis Neff and C. J. Summers

School of Materials Science & Engineering Georgia Institute of Technology

17th Annual Meeting of LEOS Puerto Rico 11 November 2004

- Field profiles
- Dispersion contours
- Refraction using *k*-vector analysis
- Conclusions

- Alternating rows posses different property (Δr , Δn , or both)
- New unit cell definition with two holes per lattice point
- New BZ representation: hexagonal becomes rectangular
- BZ folding
- Symmetry reduction

n

- Increasing superlattice strength accomplished by increasing Δn or Δr between rows [i, j]
- Effective index: quantitative value of superlattice strength of static SL for comparison with dynamic SL
 - Take amount of material added to structure by reducing r_2 hole and average the *n* over the area of r_1 hole
- In Si, for $r_2/r_1=0.857$, $n_{eff}=1.654$ which is $\Delta n=0.654$ between rows of holes

$$eff = \frac{n_b A_\delta + n_2 A_2}{A_1}$$
$$= n_b \left(1 - \left(\frac{r_2}{r_1}\right)^2 \right) + n_2 \left(\frac{r_2}{r_1}\right)^2$$

Effect of SL Strength on Band Structure (Δr)

- Decreasing r₂ increases amount of material in structure
- Stronger effect on air bands than dielectric bands
 - Shifts bands to lower frequencies
- Decreases width of PBG
- Increases band splitting
- Similar effect in dynamic superlattice when changing Δn

- For no radius difference, BZ folding scheme is straight forward and curves converge to a single point at BZ boundaries.
- Increased SL strength causes curves to diverge/repel at BZ boundaries.
- Small SL strength: unmodified curvature in center of BZ with high curvature near BZ boundaries
- Large SL strength: modified curvature of entire contour.

Band Structure: Bias Effects

Unbiased Biased $r_2/r_1 = 0.571$ Isofrequency 0.5 line Normalized Frequency, ω unbiased 0.3 biased 0.2 0.1 0 Y Χ Μ M k -vecto

PLZT (Scrymgeour *et al.*, APL **82**, 3176)

- PLZT background
- Bias of 6 $V/\mu m$
- Increase *n* from 2.49 to 2.598 (Δ*n*~ 0.11)
- Moves bands to lower frequencies
- Isofrequency line intersects bands at different points
- Dispersion surface
 'looks' different for
 unbiased/biased cases

- Isofrequency plane intersecting different areas of the dispersion surface
- The contours are congruent but shifted.
- Different contours results in different optical responses
 - Refraction/Beam steering
 - Switching/Modulation
 - Dispersion

Georgia Institute of Technology

17th annual LEOS, Nov 11, 2004

17th annual LEOS, Nov 11, 2004

- Professor Wounjhang Park
- Tsuyoshi Yamashita
- Davy Gaillot
- Work supported by MURI sponsored by the Army Research Office under Contract Number DAAD19-01-1-0603

