Dynamic Photonic Crystal Superlattices

C. Neff, W. Park*, and C. J. Summers School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta , GA *Department of Electrical & Computer Engineering, University of Colorado, Boulder, CO

> LEOS Conference 2003 Tuscon, Arizona October 28, 2003

Outline

- Introduction/Motivation
- Structure & method of analysis
- 2D slab triangular lattice
 - Tunability with electo-optic materials
- New concept:
 - Superlattice photonic crystal
 - Refraction behavior
 - Switching effects
- Summary
- Acknowledgements

Introduction/Motivation

- Fabrication of 2D photonic crystals not as complicated as 3D
- Integration onto opto-electronic systems directly on common substrate
- Large refraction effects (superprism) for beam steering, signal processing, demultiplexing
- Investigate methods to electro-optically tune these effects
 - Infiltrate with electro-optical or nonlinear materials (eg. liquid crystal)
 - Tunable refraction
 - Switching

Structure & Method of Analysis

- 2D Slab configuration suspended air, thickness =0.5a
- 3-D Finite difference time domain (FDTD) calculations with:
 - one mirror boundary
 - one perfectly matched layer (PML) boundary
 - four periodic boundaries
- Triangular lattice of holes
- Fill holes with electro-optic materials
 - Dynamic modification of band structure

Triangular Lattice

Ξ

F

ω_n=0.36

- Holes filled with LC
 - 1.5 ≤ n ≤ 2.1
- Silicon slab, n=3.46
- Even mode

LEOS, 28 October 2003

Georgia Institute of Technology

r =0.3a

 $n_{LC}=1.5$

Κ

Κ

M

'Cone shaped' curve

- Refraction angle determined by dispersion curve
- Conservation of tangential wave vector component, k_{//}, at the interface
- Final direction of travel is normal to the dispersion curve at intersection

Regular Triangular Lattice:

- Tunability ~7° at 13° incidence
- Range of operating angles 0° to ~18°
- As ∆n is increased
 - Tip of cone is cut off by the light cone
 - Thus at small incident angles, modes are decaying

New Idea: Alternating Addressing Scheme

 Δn = difference between refractive indices of the holes

- Address alternating rows of holes individually instead of homogeneously
- Creates superlattice with new Brillouin Zone shape
- More control over structure
- Electrical or optical biasing

Superlattice Effect on Band Structure

- Artificial' Superlattice (∆n=0 between rows) to test calculation
- Bands translated according to new BZ scheme
- Results valid → band gap same, shape of bands remain intact except for some translations introduced by the superlattice

LEOS, 28 October 2003

Superlattice Effect on Dispersion Diagram

- Additional periodicity changes shape of 1st Brillouin Zone
- No longer 6-fold symmetric
- When compared to homogeneous case, BZ appears 'folded' inward due to translation of bands
- Outcoupler/switch
- Regular lattice Superlattice Cutoff circle

Evolution of Dispersion Curves

Mode disappears

As Δn is increased, the separation between certain modes in the BZ widen As Δn is increased, the 3rd band intersects the isofrequency line.

Refraction Angle (Mode 1)

refracted beam

Large tunability at negative incident angles, >50° at -20° for Δ n=0.5

LEOS, 28 October 2003

Refraction Angle (Mode 2)

- Switch is very sensitive to small changes in $\Delta n \sim 0.005$
- Behavior comes from 2nd band in the band diagram

Summary

- 2D slab LC infiltrated regular triangular lattice
 - Beam steering approx. 10° with ~15% change in *n*.
- New superlattice configuration proposed by additional index modulation
 - Creates new allowed modes and drastic changes in dispersion
- New functionality to control optical properties
 - Improved beam steering >50°
 - Directional dependent switching, outcoupling
- Further studies required
 - Optimization of hole size & slab thickness
 - Superprism effects
 - Integration of fast non-linear materials for optical signal processing

Acknowledgements

- Supported by MURI program from ARO
- Jeff King
- Tsuyoshi Yamashita
- Davy Gaillot