

Complex, 3D Photonic Crystals Fabricated by Atomic Layer Deposition

J. S. King, D. Gaillot, T. Yamashita, C. Neff, E. Graugnard, and C. J. Summers School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA

MRS Fall Meeting

December 3, 2004 Boston, Massachusetts

- Research Aims
- Photonic crystals and challenges
- Advanced photonic crystal architectures
- Results
 - ZnS/TiO_2 multi-layered structure
 - Presinter non-close-packed inverse opal
- Summary

- Development of 3-D photonic crystals through a combination of templating and atomic layer deposition (ALD).
- Advanced architectures:
 - multi-layered inverse opals
 - non-close-packed inverse opals
- Increase functionality: luminescent and high index
- Enhance properties: wider band gaps, decreased minimum refractive index requirements

- Photonic Crystal (PC)– Periodic modulation of dielectric constant (refractive index).
- Photonic band gap (PBG) formation
- For visible wavelengths, periodicity on order of 200 500 nm.
- Require high contrast in refractive index (n)
- Lattice structure and basis impacts properties.

1D photonic crystal

2D photonic crystal

3D photonic crystal

• Light guiding

•Waveguides, resonators, couplers, filters, selfcollimation, giant refraction and superprism effects, slow light applications

• Light emission control

• Microcavities, photonic crystal phosphors and low threshold lasers

Photonic Crystals Inverse Opals

Silicon Inverse Opal Photonic Band Diagram

• Reflectance measurements probe photonic band structure: PBG, P-PBG

(111)

- Provide template using self-assembled silica opal.
 10 μm thick FCC polycrystalline film, (111) oriented.
- Infiltrate interstitial space with high n material.
- Etch SiO₂ spheres, forming inverse opal.

- High index contrast for complete gap to exist (> 2.8)
- For emissive applications: luminescent materials with low absorption in visible and sufficient index unavailable.
- Two solutions:
 - Multi-layered inverse opals (luminescent + high n)
 - Non-close-packed inverse opals* (widen PBG, decrease index requirements)

* Doosje, et. al. (2000)

- Combination of two materials offers practical route
- ZnS:Mn (luminescent) + TiO_2 (high n) "composite" PC.
- At 400 nm, ZnS/anatase TiO₂ PC: full PBG if $X_{ZnS} < 26\%$.

$$n_{avg} = x_1 n_1(\lambda) + x_2 n_2(\lambda)$$

Requires nano-scale control of infiltration amounts; dense, conformal films

ALD is a CVD growth technique utilizing sequential reactant pulses.

ALD Growth of ZnS

- (a) Chemi + physisorption
- (b) Physisorbed layer removal
- (c) Formation of ZnS
- (d) Removal of H_2S and HCl

Surface limited growth: conformal films + monolayer control

- ZnS:Mn first deposited on bare opal.
- TiO₂ layer next deposited in remaining interstitial volume.
- Inverse opal formed by HF etch.
- 3rd step: back-filled inverse opal, yielding 3-layer structure.
 - Enabled by ALD's characteristics: conformal and precise

 $TiO_2 ALD: TiCl_4 + H_2O$

23 nm TiO₂/10 nm ZnS:Mn/20 nm TiO₂ Inverse 433 nm Opal King, et. al. Adv. Mat. (submitted)

(a) sintered

- (b) ZnS:Mn infiltrated
- (c) $ZnS:Mn/TiO_2$ infiltrated, and
- (d) ZnS:Mn/TiO₂ inverse opal.

(a) ZnS:Mn/TiO₂ inverse opal and after backfilling with
(b) 20 (c) 40 (d) 60 (e) 80 (f) 100 total ALD cycles. (1-5 nm)

3-layer ZnS:Mn/TiO₂ inverse opal (433 nm)

(a) TiO₂ (14 nm)/ ZnS:Mn (20 nm)/air inverse opal

after backfilling with TiO₂ layers of

(b) 1 nm

- (c) 2 nm
- (d) 3 nm
- (e) 4 nm
- (f) 5 nm, thickness
 - High-order photonic band PL modulation
 - 108% increase in relative intensity

433 nm opal, 337 nm N_2 laser excitation

- Increases PBG gap width (up to 100%)*
- Reduces minimum index requirements

Air network in an inverse NCP opal

Dielectric network in an inverse NCP opal

- Close-packed Structures

2 parameters define the geometry of the structure instead of one.

- Radius of sphere: R/a
- Radius of connecting cylinder: Rc/a

(a is the cubic lattice constant)

Rc was proven to greatly affect gap size compared to R.

Fabrication Scheme:

- Sinter opal prior to infiltration
- After etching, sphere connectivity is large
- Back-fill inverse opal to create cylinder-like connectivity

1050° C 3 hour pre-infiltration heat treatment

TiO₂ NCP inverse opal formation

Close-packed inverse Opal

PrS inverse opal

PrS inverse opal, backfilled 80 ALD cycles

PrS inverse opal, backfilled 160 ALD cycles

433 nm opal 15° from [111]

- Increased PC functionality by formation of
 - ZnS:Mn/TiO₂ multi-layered inverse opals
- Improved photonic band properties by formation of
 - Non-close-packed TiO₂ inverse opals
- Demonstrated tuning of luminescent and photonic band properties.
- Established **ability to grow complex** *luminescent* **PC structures** at the nanoscale using ALD.
- Future: Non-close-packed multi-layer PCs.

U.S. Army Research Office

• MURI Contract DAAA19-01-1-0603

Georgia Institute of Technology Molecular Design Institute

• Office of Naval Research Contract N00014-95-1-1116