

Optical and Crystallographic Properties of Inverse Opal Photonic Crystals Grown by Atomic Layer Deposition

J. S. King, C. W. Neff, D. L. Heineman, E. D. Graugnard and C. J. Summers

School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA

MRS Fall Meeting

December 1 - 5, 2003 Boston, Massachusetts

Georgia Tech MSE Research Group

Graduate Students

- Davy Gaillot
- Xudong Wang
- Tsuyoshi Yamashita

Army Research Lab

- Steve Blomquist
- Eric Forsythe
- Dave Morton

- Introduction: Photonic Crystals
- Fabrication of Luminescent Inverse Opals
- Atomic Layer Deposition
- Results
 - ZnS:Mn controlled infiltration
 - TiO_2 infiltration and heat treatment
 - ZnS/TiO_2 multi-layered structure
- Summary

- Photonic Crystal Periodic modulation of dielectric constant
- Exhibit photonic band gap (PBG).
- Photonic band gap materials can be used to create waveguides, resonators, couplers, filters, etc.
- Luminescent 2D & 3D PC structures offer the potential for controlling wavelength, efficiency, time response and threshold properties (Plasma phosphors, solid state lighting, etc.).

Photonic Crystals Inverse Opals

Silicon Inverse Opal Photonic Band Diagram

• Reflectance measurements probe photonic band structure: PBG, P-PBG

FCC Brillouin Zone

Κ

- Provide template using self-assembled silica opal.
 10 µm thick FCC polycrystalline film, (111) oriented.
- Infiltrate interstitial space with high n material.
 ZnS:Mn n~2.5 @ 425 nm (pseudo photonic band gaps)
 TiO₂ (rutile) n_{avg}~ 3.08 @ 425 nm (full photonic band gap possible)
- Etch SiO₂ spheres, forming inverse opal.

- Inverse opal Full PBG if n > 2.8
- Most luminescent materials do not offer sufficient index.
- High index, luminescent materials required for PCP
 - Combination of two materials offers practical route.
 - -ZnS:Mn (luminescent) $+TiO_2$ (high n) multi-layer.
- Requires controlled thickness; dense, conformal films.
 - 24.5 % vol. fraction doubles PBG (John & Busch)
 - Atomic Layer Deposition (ALD) fulfills requirements.

ALD is a CVD growth technique utilizing sequential reactant pulses.

Surface limited growth: conformal films + monolayer control

- Previously demonstrated ZnS:Mn full infiltration (MRS 2002, APL 83).
- However, multi-layered opals require infiltration finesse.
- 330 and 460 nm opals were filled with increasing % of ZnS:Mn.
- Deposition @ 500° C with a MnCl₂ doping pulse every 32 cycles.
- Shift of P-PBG to longer wavelengths shown in specular reflectance after infiltrations.

ZnS:Mn Stepwise Infiltration

Deviation from theory:

- Coating thickness based on planar growth, not curved surface.
- Reflectivity measured @ 15° from normal.

- Need to demonstrate ability to grow high index component by ALD.
- Aarik, et.al. have shown in planar ALD TiO_2 growth studies:

 $<165^{\circ}$ C = amorphous, 165° - 350° C = anatase, $>350^{\circ}$ C= rutile

- TiO_2 was infiltrated using $TiCl_4$ and H_2O pulses.
- Amorphous film growth has advantages over crystalline:
 - Amorphous films exhibit very smooth surfaces.
 - Better suited for the conformal infiltration of opals
- Infiltrate at low T, then heat treat to obtain rutile (high index).
- Infiltrations were performed at both 100° C and 500° C.
- Inverse opal formation
 - For amorphous film, ion mill to expose silica (very conformal).

Si058 (200 nm Opal)

Si090A (430 nm)

Si091D (330 nm)

Si083 (273 nm)

TiO₂ Rutile Conversion - XRD

Deposited at 500° C (initially anatase). ~50% rutile after HT Deposited at 100° C (initially amorphous). ~65% rutile after HT

ZnS/TiO₂ Inverse Opal

- TiO_2 at deposited at 100° C, ZnS:Mn at 500° C.
- Amorphous TiO_2 converts to anatase during ZnS:Mn growth.

ZnS/TiO₂ Infiltrated Opal

ZnS:Mn/TiO₂ multi-layered 330 nm infiltrated opal

ZnS/TiO₂ Inverse Opal

ZnS:Mn/TiO₂ multi-layered 330 nm inverse opal.

- Successful formation of ZnS:Mn and TiO₂ inverse opals.
- Precise control of ALD infiltration demonstrated.
- As-deposited TiO₂ can be converted to rutile phase.
- Clearly demonstrated **ability to grow complex** *luminescent* **PC structures** at the nanoscale using ALD.
- Future: PL measurements, RTA, more complex structures.

U.S. Army Research Office

• MURI Contract DAAA19-01-1-0603

Georgia Institute of Technology Molecular Design Institute

Office of Naval Research Contract N00014-95-1-1116