

Z. T. Kang, H. Menkara, B. K. Wagner and C. J. Summers Georgia Institute of Technology, Atlanta, GA 30332

R. Durst, Y. Diawara, G. Mednikova and T. Thorson Bruker AXS 5465 East Cheryl Parkway, Madison WI 53711

September 20, 2005

Outline

Introduction

X-ray image phosphors

Objective

Synthesis of ZnTe:O for biological imaging

Experimental

- Dry doping by ball-milling in O₂
- Dry etching in H₂ atmosphere

Results and Discussion

- Optical and structural analysis
- Comparison with standard X-ray phosphors

Conclusions and Future Work

X-ray luminescence and phosphors

Principle of x-ray luminescence

- Absorbing of an X-ray photon
- Producing an energetic photoelectron
- Generating secondary e-h pairs
- E-h recombining at luminescent centers
- Emitting visible photons

Characteristics of efficient x-ray phosphors

- High x-ray absorption (α_{x-ray}) and large density;
- Low cost per e-h pair (small < E_{eh} > and E_g)
- **Efficient electron-hole transport (** η_{eh} **)**
- High luminescent efficiency (QE_i)
- Low optical self absorption (α_{ph})

Quantum gain of X-ray phosphors

Expression of quantum gain g_{eh} (light photons/X-ray photon) of X-ray phosphors:

$$g_{eh} = \frac{E_{xray} \eta_{eh} Q E_l}{\langle E_{eh} \rangle} = \frac{E_{xray} \eta_{eh} Q E_l}{\beta E_g}$$

Host material	E _g (eV)	β	<e<sub>eh> (eV)</e<sub>	g _{eh}	
ZnTe	2.3	2.2	5.0	2400	
ZnSe	2.7	2.2	5.9	2040	
ZnS	3.8	2.9	11.0	1040	
NaI	5.9	2.7	15.9	755	g el
CsI	6.4	2.5	16.0	750	- 01
Gd_2O_2S	4.4	3.9	17.2	700	
CaWO ₄	4.6	7.0	32.3	370	

< E_{eh} >: mean creation energy to form an e-h pair; η_{eh} : e-h transport efficiency; QE_{I} : luminescent center conversion efficiency.

Sep.20, 2005

II-VI Workshop

Inoue et al., J. Appl. Phys., 55, 1558 (1984)

X-ray phosphors for biological imaging

Applications:

Efficient and fast X-ray phosphors needed for CCD detectors used for synchrotron-based structural biology

Macromolecular imaging such as biologic cells, protein, ribosome

Synthesis issues for ZnTe:O X-ray phosphors

Issues:

- ZnTe is very sensitive to moisture during synthesis.
- Tellurium oxides are formed on the particle surface.

Conventional wet doping process used for ZnS and ZnSe phosphors synthesis is very difficult for ZnTe; A dry doping process is needed.

Dry synthesis process:

- Ball-milling of ZnTe in O₂ can lead to mechanically stimulated ion implantation of oxygen into the crystal lattice;
- Doping ZnTe with a gas media through ball milling is much more effective than doping by solid or liquid medias.

PL properties of ZnTe:O phosphors

Sep.20, 2005

II-VI Workshop

CL properties of ZnTe:O phosphors

- O₂ doping significantly improved the CL efficiency compare to ZnO doping.
- **Fast CL exponential decay time of 1.1µs was observed.**

Effect of N₂/5%H₂ annealing on surface property

Particle morphology by SEM

(a) 1 um 50 um 2 um 2 um

(a) ZnTe:O annealed in Vacuum; (b) ZnTe:O annealed in $N_2/5\%H_2$.

Smoothed surface morphology

Removal of surface tellurium oxides

Surface chemistry by XPS

Sep.20, 2005

Improvement of optical property by H₂ annealing

X-ray luminescent efficiency

Sample No.	Annealing atmosphere	% gain (ZnSe: Cu,Cl)	% gain (Gd ₂ O ₂ S:Tb)
ZT05	Vacuum	11.6	21.9
ZT11	N ₂	9.2	12.4
ZT120	95%N ₂ /5%H ₂	56.1	76.4

Luminescent efficiency of ZnTe:O improved ~5 times after H₂ annealing

Sep.20, 2005

Preliminary X-ray imaging results

ZnTe:O screen x-ray imaging

Resolution: 2.5 lines/mm

Mo (17 KeV) radiation is used

II-VI Workshop

The emission spectrum of ZnTe:O is an very good match to the spectral sensitivity of front-illuminated CCD

II-VI Workshop

Comparison with standard phosphors (2)

Phosphor Material	ZnTe:O	ZnSe:Cu	Gd ₂ O ₂ S:Tb
Peak wavelength (nm)	680	650	545
Gain% (Mo, 17 KeV)	56.1	100	73.4
Gain% (Cu, 8KeV)	111.3	100	163.6
Afterglow (10ms later)	1×10-4	1×10-4	7×10 ⁻⁴
1/e Decay time (µs)	1.1	8.9	470
Resolution (lines/mm)	2.5	2.5	2.5
Screen density (mg/cm ²)	46	45	12
Particle size (um)	51	20	9

High efficiency, high resolution, fast decay, low afterglow and improved spectral match to the CCD detector, indicate that ZnTe:O is a promising phosphor candidate for X-ray imaging applications.

Conclusions and Future work

Conclusions

- ZnTe:O powder phosphors successfully prepared by dry synthesis using gaseous doping and etching
 - Red emission centered at 680nm; decay time 1.1 $\mu s.$
- 5 times improvement of X-ray luminescent efficiency was observed after annealing in a forming gas atmosphere, attributed to the removal of surface tellurium oxides.
- The X-ray luminescent properties were evaluated and compared to standard commercial phosphors.
 - Efficiency equivalent to 76% of Gd₂O₂S:Tb
 - An equal resolution of 2.5 lines/mm

Future Work

- Optimize doping & annealing to further improve QE
- Develop dry coating technique

- Financial support from Molecular Beam Consortium
- Support by Ga Tech Research Institute Shackelford GRA Fellowship