

Synthesis and Characterization of Mn^{2+} Doped Zn_2SiO_4 Phosphor Films by Combustion CVD Method

Z. T. Kang^a, Y. Liu^b, B. K. Wagner^a, R. Gilstrap^a, M. Liu^b, and C. J. Summers^a

 ^a Phosphor Technology Center of Excellence,
^b Center for Innovative Fuel Cell and Battery Technologies School of Materials Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245

> EL 2004 Toronto, Canada September 22, 2004

Outline

- Introduction
 - $Zn_2SiO_4:Mn^{2+}$ phosphor
 - Combustion CVD process
- Objectives
- Experimental Procedures
- Results and Discussions
- Conclusions
- Future Work

Zn₂SiO₄:Mn²⁺ Phosphor Properties

Application as Green phosphor

- Lamp CRT
- PDP EL

Synthesis of Zn₂SiO₄:Mn²⁺ films

- Sol-gel process (R. Selomulya et al)
- Magnetron sputtering (A. H. Kitai et al)
- Charged liquid cluster beam technique (M. Cich et al)

Combustion CVD Process (A.T. Hunt et al)

PTCDE Protecher Technology Conford Externation

- Cost-effective
- Rapid process
- Easy to operate
- Great flexibility
- Compositional homogeneity

- To prepare efficient luminescent phosphor films using a Combustion CVD process.
- To characterize the microstructure features of the prepared films.
- To evaluate the optical properties of the prepared films.

- XRD
- **SEM**
- PL and PLE
- CL and CL Efficiency
- CL Decay

Standard XRD pattern of Zn_2SiO_4 and Zn_2SiO_4 :4%Mn²⁺ samples prepared at temperatures between 750 and 1200 C

SEM images of Zn_2SiO_4 :Mn²⁺ film deposited on quartz glass at 1200°C

Outer region 100~200nm grains

Central region 500~800nm grains

Left) CL spectra of Zn_2SiO_4 :Mn²⁺ phosphor films prepared by CCVD

Right) CL efficiency of Zn_2SiO_4 :Mn²⁺ as a function of electron voltage (1) Zn_2SiO_4 :4%Mn²⁺ film prepared at 1200°C; (2) commercial powder phosphor

CL Decay curves of Zn_2SiO_4 with Mn^{2+} concentration from 2~8%

- Zn₂SiO₄:Mn²⁺ phosphor films were successfully prepared by combustion CVD.
- The films were well crystallized at deposition temperature of 1200 °C and showed highest luminescent efficiency.
- The films consisted of densely packed particles with a fine grain size of several hundred nanometers.
- Strong PL and CL luminescence intensities were observed, with a maximum CL luminescence equivalent to 53% of the luminescence measured from a commercial powder phosphor.

- Further optimization of this deposition technique and its extension to other oxide phosphor systems.
- Prepare multi-layer phosphor films with controlled color and refractory index.
- Investigate the possibility of building automatic combinatorial material synthesis system using CCVD technique.

