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3D Photonic Crystals
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3D Photonic Crystals
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Inverse Opal Structures

PS, silica or 
PMMA spheres
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Properties of Opals and Inverse 
Opals

• Opals
– 2-3 Γ-L Pseudo PBGs observed for refractive index 

greater than 1.1  (PS, silica, PMMA colloidal spheres)

• Conformally infiltrated opals (ALD/CVD techniques)
– Total dielectric volume < 26% (~22.4%)
– Outer shell radius controls final geometry
– PBG static tunability is a function of lattice constant a, 

refractive index contrast and dielectric filling fraction

• Inverse shell opals 
– Complete PBG predicted for n > 3.3 (Si, GaP, etc.)
– FCC air lattices reported to enhance PBG properties
– Total dielectric volume < 26% (~22.4%)
– PBG static tunability is a function of lattice constant a, 

backbone refractive index, dielectric filling fraction and 
network topology



Review of Liquid Crystals in 3D PCs

• Liquid crystal tuning in infiltrated opals:
– K. Yoshino et al. Appl. Phys. Lett. 75, 932 (1999) 
– K. Yoshino et al. Synth. Metals 121, 1459 (2001)
– D. Kang et al. Phys. Rev. Lett. 86, 4052 (2001)
– Q.-B. Meng et al. J. Appl. Phys. 89, 5794 (2001)
– Y. Shimdo et al. Appl. Phys. Lett. 79, 3627 (2001)

• Liquid crystal infiltration in inverse opals:
– K. Busch & S. John, PRL 83, 967 (1999)
– P. Mach et al. Phys. Rev. E 65, 031720 (2002)
– G. Mertens et al. Appl. Phys. Lett. 80, 1885 (2002)
– M. Ozaki et al. Adv. Mater. 14, 514 (2002)
– S. Kubo et al. J. Am. Chem. Soc. 124, 10950 (2002)
– S. Gottardo et al. Physica B 338, 143 (2003)
– S. Kubo et al. J. Am. Chem. Soc. 126, 8314 (2004)
– S. Kubo et al. Chem. Mater. 17, 2298 (2005)



Tunability Schemes

LC Infiltrated Opal PLZT Inverse Opal
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Non-close-packed Inverse 
Shell Opals

Opal Template Sintered Infiltrated

Rs = RSL - BFthick

Rc
2 = √(RSL

2 - R2)-BFthickBFthick

Rs

Rc

Backfill layer

RSL

M. Doosje et al. J. Opt. Soc. Am. B 17, 600 (2000)
H. Miguez et al. Adv. Mater. 15, 597 (2003)



Properties of Non-close-packed 
Inverse Shell Opals

• Non-close-packed inverse shell opals*  
– Complete PBG predicted for n > 2.6 in optimized structures
– Lowest possible dielectric filling fraction (~5%)
– Highest open volume available for infiltrated material (up to 

~95%)
– Outer shell radius and backfill thickness control final 

geometry and degree of connectivity
– Wide air pores offer electro-optical material infiltration ease
– ALD technique supports fine network topology tuning thus 

enabling tailoring of PBG properties
– Structures resulting to sintered opals-like are achievable 

using various materials

*Gaillot et al. (to be submitted)



Non-close-packed Inverse Shell Opal 
Tunability Schemes

Liquid Crystal

Original backbone 
RSHELL / d = 0.5775

Conformal Backfilling

No Backfilling



Tunability Computations

• 3D-finite difference time domain (3D-FDTD) was used as a 
robust and versatile technique to compute photonic 
properties.

• Photonic bands for the Γ−L k-vector domain were 
computed to predict gap widths and central positions of 1st

order Bragg peak.

• Structures investigated:
– Opals
– Inverse opals/shell opals
– Non-close-packed inverse opals and related

• Tunable materials investigated:
– Liquid Crystal (LC) with n = 1.5-2.1 (∆n = 0.6)



LC Infiltrated Silica Opals

a = 400 nma

SiO2

LC

76 nm shift



LC Infiltrated TiO2 Inverse 
Shell Opals

a = 400 nm

nTiO2 = 2.65
a

TiO2

LC

220 nm shift



LC Infiltrated Non-close-packed 
Inverse Shell Opals

TiO2

a
LC

a = 400 nma

285 nm shift



LC Tunability Results

SiO2
Opals

TiO2 Inverse 
shell opals

Non-close-packed 
inverse shell opals

Non-close-packed 
inverse shell 

backfilled opals
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PBG width 
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∆n = 0.1 (%)

Maximum 
Volume (%)

Γ-L Bragg 
peak shift –
∆n = 0.1 (nm)

Max. PBG 
width (%)

8

6.6

2.1

1.5 13 26

1.5 37 74

1 47 90.5

1.5 35 68.67.5



Experimental Study

• Non-close-packed inverse shell 
opal structures

• Lowest dielectric filling fraction
• Large volume available for liquid 

crystal
• Largest shift of the Bragg peak



Fabrication of Non-close-packed 
Inverse Shell Opals

Opal Template Sintered

Infiltrated Inverted



NCP Inverse Opal Fabrication:
Atomic Layer Deposition

• Atomic layer deposition in synthetic opal 
templates using TiO2 and Al2O3.

• Surface limited growth.
• Precise digital control of film thickness.
• Low temperature growth (80°C) allows

– Ultra-smooth conformal thin films
– growth on PS spheres

• Selective etching

MFC

MFC
N2

Needle
Valve

Solenoid
ValveTube Furnace

Sample

Pressure
Gauge

Mass Flow
Controllers

Exhaust

Sample
Entry

TiCl4

H2O



ALD of TiO2 at 100ºC

(111) Cross-sections

300 nm

433 nm opal infiltrated 
with 20 nm of TiO2

433 nm opal infiltrated 
with TiO2

433 nm TiO2 inverse opal 

• TiO2 infiltration at 100°C produces very smooth and conformal 
surface coatings with rms roughness ~2Å.

• Heat treatment (400°C, 2 hrs.) of infiltrated opal converts it to 
anatase TiO2, increasing the refractive index from 2.35 to 2.65, with 
only a 2Å increase in the rms surface roughness.



Pre-sintered Non-close-packed 
Inverse Shell Opals



Static Tunability:
Backfilling Non-close-packed Inverse Shell Opals

RSL

BFthick

Backfilled 
layerConformal Backfilling

• ALD provides precise 
filling fraction control

• Over 600 nm tuning
• 167% Bragg peak width 

enhancement



Sample Cell Fabrication

• TiO2 non-close-packed inverse shell opals were prepared using the 
sinter method.

• Several samples were coated with a hydrophobic surface treatment
(fluorinated chlorosilane) to minimize surface pinning.

• Individual inverse opal grains were selected and placed between 
cleaned ITO coated glass substrates.

• Clean 10 µm thick SU-8 spacers were used to separate the ITO 
surfaces.

NCP inverse opal

ITO glass

ITO glassSU-8 spacer



Liquid Crystal Infiltration

• Hydrophilic (untreated) samples
– Infiltrated with pure 5CB at 

50°C.
– Drop at gap of the sample cell.
– Immediate color change.

• Hydrophobic (treated) samples
– Infiltrated with a mixture of 5% 

5CB in ethanol at 20°C.
– Drop at edge of partially open 

cell.
– Gradual color change with 

repeated application
– Post infiltration ensured 

ethanol removal.

5CB

n = 1.522 to 1.706



Schematic of microscope 
reflectance measurement
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Reflectance Spectra
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aven
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Electric Field Tuning:
TiO2 Non-close-packed inverse shell opals

• Reflectance spectra for increasing applied electric field (bipolar 
square wave at 1 kHz) for NCPIO samples.

Hydrophobic treated Hydrophilic



Electric Field Tuning

• Bragg peak position versus 
applied electric field at 1kHz

• Bragg peak width versus 
applied electric field at 1kHz

50V @ 25kHz  → 856 nm



Experimental Summary

• Hydrophilic (untreated) sample:
– 14 nm shift at 1 kHz
– 14 nm shift at 25 kHz
– Displays no hysteresis

• Hydrophobic sample:
– Treated with fluorinated chlorosilane
– 18 nm shift at 1 kHz

• Gives nLC = 1.524
– 20 nm shift for 5 V/µm at 25 kHz

• Gives nLC = 1.518
– Displays hysteresis



Comparison with Calculation

• Experimental Results:
– Peak Shift

• Hydrophobic: 20 nm or ∆n of 0.06
• Hydrophilic: 14 nm

– Peak Width Tunability
• Hydrophobic: 0.91 %
• Hydrophilic: 1.24 %

• Theoretical Predictions:
– Peak Shift: 47 nm for ∆n = 0.1 (28 nm for 0.06)
– Peak Width Tunability: 1% for ∆n = 0.1



Summary

• Theoretically calculated the expected performance for 
several opal based 3D PCs.

• Predicted optimal structures for Bragg peak tunability or 
Bragg peak width – Non-close-packed inverse opal.

• Observed a large 14 nm Bragg peak shift in high 
dielectric TiO2 NCP structures.

• Observed a larger 20 nm shift for NCP structures with a 
hydrophobic surface treatment.

• Observed the maximum expected change of the 
refractive index for 5CB.

• Pathway to a tunable full photonic band gap:
– Higher index backbone
– Larger ∆n opto-electronic material
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