

Liquid Crystal Infiltration of Template Patterned 3D Photonic Crystals

E. Graugnard, D. P. Gaillot, J. S. King, S. Jain & C. J. Summers

School of Materials Science and Engineering Georgia Institute of Technology, Atlanta, GA

Y. Zhang-Williams & I. C. Khoo

Department of Electrical Engineering Pennsylvania State University, University Park, PA

San Diego, CA 31 July – 4 August 2005

- 3D Photonic Crystals
- Review of Liquid Crystals in 3D Photonic Crystals
- Tunability Schemes
- Tunability Computations (FDTD)
 - Opal
 - Inverse shell opal
 - Non-close-packed inverse opals
- Experimental Studies
 - Non-close-packed inverse opals
 - Pre-Sinter plus Atomic layer deposition (ALD)
 - Liquid crystal infiltration 5CB
 - Reflectance Spectra
 - Electric field tuning
 - Hydrophobic / Hydrophilic
- Summary

3D Photonic Crystals

Structures with a 3-dimensional dielectric periodicity.

Inverse opals

Inverse Opal Structures

Georgia

Tech

• Opals

Georgialmstitude

- 2-3 Γ-L Pseudo PBGs observed for refractive index greater than 1.1 (PS, silica, PMMA colloidal spheres)
- Conformally infiltrated opals (ALD/CVD techniques)
 - Total dielectric volume < 26% (~22.4%)
 - Outer shell radius controls final geometry
 - PBG static tunability is a function of lattice constant *a*, refractive index contrast and dielectric filling fraction
- Inverse shell opals
 - Complete PBG predicted for n > 3.3 (Si, GaP, etc.)
 - FCC air lattices reported to enhance PBG properties
 - Total dielectric volume < 26% (~22.4%)
 - PBG static tunability is a function of lattice constant *a*, backbone refractive index, dielectric filling fraction and network topology

Georgialnett Review of Liquid Crystals in 3D PCs

Liquid crystal tuning in infiltrated opals:

- K. Yoshino et al. Appl. Phys. Lett. 75, 932 (1999)
- K. Yoshino et al. Synth. Metals 121, 1459 (2001)
- D. Kang et al. Phys. Rev. Lett. 86, 4052 (2001)
- Q.-B. Meng et al. J. Appl. Phys. 89, 5794 (2001)
- Y. Shimdo et al. Appl. Phys. Lett. 79, 3627 (2001)

• Liquid crystal infiltration in inverse opals:

- K. Busch & S. John, PRL 83, 967 (1999)
- P. Mach et al. Phys. Rev. E 65, 031720 (2002)
- G. Mertens et al. Appl. Phys. Lett. 80, 1885 (2002)
- M. Ozaki et al. Adv. Mater. 14, 514 (2002)
- S. Kubo et al. J. Am. Chem. Soc. 124, 10950 (2002)
- S. Gottardo et al. Physica B 338, 143 (2003)
- S. Kubo et al. J. Am. Chem. Soc. 126, 8314 (2004)
- S. Kubo et al. Chem. Mater. 17, 2298 (2005)

M. Doosje *et al*. J. Opt. Soc. Am. B 17, 600 (2000) H. Miguez *et al*. Adv. Mater. 15, 597 (2003)

- Non-close-packed inverse shell opals*
 - Complete PBG predicted for n > 2.6 in optimized structures
 - Lowest possible dielectric filling fraction (~5%)
 - Highest open volume available for infiltrated material (up to ~95%)
 - Outer shell radius and backfill thickness control final geometry and degree of connectivity
 - Wide air pores offer electro-optical material infiltration ease
 - ALD technique supports fine network topology tuning thus enabling tailoring of PBG properties
 - Structures resulting to sintered opals-like are achievable using various materials

- Photonic bands for the Γ–L k-vector domain were computed to predict gap widths and central positions of 1st order Bragg peak.
- Structures investigated:
 - Opals

Georgia

- Inverse opals/shell opals
- Non-close-packed inverse opals and related
- Tunable materials investigated:
 - Liquid Crystal (LC) with n = 1.5-2.1 ($\Delta n = 0.6$)

LC Infiltrated TiO₂ Inverse Shell Opals

Georgialnstitute

a = 400 nm

LC Tunability Results

	Structure	Max. PBG width (%)	PBG width tunability – Δ <i>n</i> = 0.1 (%)	Γ-L Bragg peak shift – $\Delta n = 0.1$ (nm)	Maximum Volume (%)
SiO ₂ Opals		8	1.5	13	26
TiO ₂ Inverse shell opals		6.6	1.5	37	74
Non-close-packed inverse shell opals		2.1	1	47	90.5
Non-close-packed inverse shell backfilled opals		7.5	1.5	35	68.6

Experimental Study

Georgia Inst

- Non-close-packed inverse shell opal structures
- Lowest dielectric filling fraction
- Large volume available for liquid crystal
- Largest shift of the Bragg peak

Fabrication of Non-close-packed Inverse Shell Opals

Georgia Institute of Technology Atomic Layer Deposition

- Atomic layer deposition in synthetic opal templates using TiO₂ and Al₂O₃.
- Surface limited growth.
- Precise digital control of film thickness.
- Low temperature growth (80°C) allows
 - Ultra-smooth conformal thin films
 - growth on PS spheres
- Selective etching

433 nm opal infiltrated with 20 nm of TiO₂

433 nm opal infiltrated with TiO₂

433 nm TiO_2 inverse opal

- TiO₂ infiltration at 100°C produces very smooth and conformal surface coatings with rms roughness ~2Å.
- Heat treatment (400°C, 2 hrs.) of infiltrated opal converts it to anatase TiO₂, increasing the refractive index from 2.35 to 2.65, with only a 2Å increase in the rms surface roughness.

Pre-sintered Non-close-packed Georgialnstitute of Technology **Inverse Shell Opals**

500 nm

Georgialmst

- TiO₂ non-close-packed inverse shell opals were prepared using the sinter method.
- Several samples were coated with a hydrophobic surface treatment (fluorinated chlorosilane) to minimize surface pinning.
- Individual inverse opal grains were selected and placed between cleaned ITO coated glass substrates.
- Clean 10 µm thick SU-8 spacers were used to separate the ITO surfaces.

• Hydrophilic (untreated) samples

Georgia Insti

- Infiltrated with pure 5CB at 50°C.
- Drop at gap of the sample cell.
- Immediate color change.
- Hydrophobic (treated) samples
 - Infiltrated with a mixture of 5%
 5CB in ethanol at 20°C.
 - Drop at edge of partially open cell.
 - Gradual color change with repeated application
 - Post infiltration ensured ethanol removal.

n = 1.522 to 1.706

 Reflectance spectra for increasing applied electric field (bipolar square wave at 1 kHz) for NCPIO samples.

Electric Field Tuning

Bragg peak position versus

Georgia Institute

Technolog

- Bragg peak width versus

- Hydrophilic (untreated) sample:
 - 14 nm shift at 1 kHz
 - 14 nm shift at 25 kHz
 - Displays no hysteresis
- Hydrophobic sample:
 - Treated with fluorinated chlorosilane
 - 18 nm shift at 1 kHz
 - Gives $n_{LC} = 1.524$
 - 20 nm shift for 5 V/µm at 25 kHz
 - Gives *n*_{LC} = 1.518
 - Displays hysteresis

Comparison with Calculation

- Experimental Results:
 - Peak Shift
 - Hydrophobic: 20 nm or Δn of 0.06
 - Hydrophilic: 14 nm
 - Peak Width Tunability
 - Hydrophobic: 0.91 %
 - Hydrophilic: 1.24 %
- Theoretical Predictions:
 - Peak Shift: 47 nm for $\Delta n = 0.1$ (28 nm for 0.06)
 - Peak Width Tunability: 1% for $\Delta n = 0.1$

Summary

- Theoretically calculated the expected performance for several opal based 3D PCs.
- Predicted optimal structures for Bragg peak tunability or Bragg peak width – Non-close-packed inverse opal.
- Observed a large 14 nm Bragg peak shift in high dielectric TiO₂ NCP structures.
- Observed a larger 20 nm shift for NCP structures with a hydrophobic surface treatment.
- Observed the maximum expected change of the refractive index for 5CB.
- Pathway to a tunable full photonic band gap:
 - Higher index backbone
 - Larger Δn opto-electronic material

Acknowledgements

- Curtis Neff
- Dr. Brent Wagner

- Mike Ciftan/Rich Hammond, U.S. Army Research Office
 - MURI "Intelligent Luminescence for Communication, Display and Identification"
 - Contract DAAA19-01-1-0603