



## ATOMIC LAYER DEPOSITION FOR PRECISE, LARGE-SCALE NANOSTRUCTURE FABRICATION

E. Graugnard, J.S. King, X.D. Wang, D. Heineman, Z.L. Wang, and C.J. Summers

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA

The Fifth Georgia Tech Conference on Nanoscience and Nanotechnology

> November 10-11, 2004 Atlanta, Georgia U.S.A.



## Outline



- Introduction to Atomic Layer Deposition
- Introduction to Photonic Crystals
  - Opals
  - Inverse Opal
  - Requirements for Photonic Band Gaps: high filling fraction, smooth, conformal, high refractive index
- Infiltration using ALD
  - Meets above requirements
  - TiO<sub>2</sub> infiltration
  - Novel Structures Fabricated with ALD Template Infiltration
- Summary

## Atomic Layer Deposition (ALD)



- Surface limited growth by a modified CVD process.
- Proceeds through cyclic saturative surface reactions and chemical purges resulting in constant thickness increase per cycle.
- Results in conformal growth with digital thickness control.



E. Graugnard, et al.

## Atomic Layer Deposition of Technology of TiO<sub>2</sub>



 $n(-OH)(s) + TiCl_4(g) \rightarrow (-O-)_n TiCl_{4-n}(s) + nHCl(g)$ 

 $(-O-)_{n}TiCl_{4-n}(s) + (4-n)H_{2}O(g) \rightarrow (-O-)_{n}Ti(OH)_{4-n}(s) + (4-n)HCl(g)$ 



- Liquid precursors: high vapor pressure at low T.
- $TiCl_4$  is highly reactive with the oxide film.
- Result: Wide deposition temperature window: RT to 600° C



- Pulse lengths and cycles computer controlled
- Deposition temperatures from 75 650°C.

## Georgia Tech TiO<sub>2</sub> ALD System

- TiO<sub>2</sub> infiltrations are performed at Georgia Tech using a custom built hot-wall, flow-style reactor.
  - Planar conditions:
    - TiCl<sub>4</sub>/H<sub>2</sub>O 1s/1s
    - N<sub>2</sub> purge 2s
  - Opal conditions:
    - TiCl<sub>4</sub>/H<sub>2</sub>O 4s/4s
    - N<sub>2</sub> purge 10s



Georgialnstitute of Technology



## **Planar Thin Film Growth:** Growth Rate vs. Substrate Temperature





- 3 distinct regions of growth that correspond with development of crystal structure
  - 100 200°C amorphous
    - Higher growth rate
  - 200 500°C anatase
  - 500 700°C rutile
- Decreased density of reactive surface species (-OH groups) at higher temperatures

→ 1000 cycles → 2000 cycles → 4000 cycles

#### 0.5s H<sub>2</sub>O pulse, 1s TiCl<sub>4</sub> pulse, 4s purge, 1000 cycles



## ALD of TiO<sub>2</sub>



#### Surface Roughness: AFM Images

- Formation of polycrystalline structure results in surface roughening of the film, which increases with increased deposition temperature.
- Surface roughness prevents direct high temperature ALD in opals



AFM images acquired with a Park Instruments Inc. CP Autoprobe and processed with WSxM 3.0 from Nanotec Electronica S.L.

11 Nov. 2004

E. Graugnard, et al.

# Georgial structory Photonic Crystals V

- Photonic Crystal periodic modulation of dielectric constant
- Exhibits a "Photonic Band Gap" (PBG) where propagation of a range of photon energies is forbidden.
- For visible wavelengths, periodicity on order of 150 500 nm.
- Introduction of "dielectric defects" yield modes within the PBG.
- Luminescent 2D & 3D PC structures offer the potential for controlling wavelength, efficiency, time response and threshold properties (phosphors, displays, solid state lighting, etc.).

11 Nov. 2004

## **Real Photonic Crystals:** Applications for thin films





**Georgia**lnstitute of **Tech**nology

## 3D Photonic Crystals: Opals & Inverse Opals



- For 3D PC's: "top-down" approaches are difficult.
  - "Bottom-up" approach: self-assembly
- Most common 3D photonic crystal is the opal.
  - Close-packed silica spheres in air
- Opal is used as a template to create an inverse opal.
  - Close-packed air spheres in a dielectric material





## SiO<sub>2</sub> Opal Films

- Opal films are polycrystalline, 10  $\mu$ m thick, FCC films with the (111) planes oriented parallel to the surface.
- For visible spectrum, lattice constant ~ 140 500 nm.





*Challenge*: growth of uniform films within a dense, highly porous, high surface-area, FCC matrix

#### **Opal Infiltration: Growth Issues Georgia Geometrical Constraints**

- Narrowest pathway (bottleneck) into opal is through (111) planes.
- Consideration of geometry predicts pore closure at 7.75% of sphere diameter.
- Monte Carlo simulations show this is  $\sim 86\%$  infiltration of voids.







E. Graugnard, et al.

## Georgial Stitute Opal Films: Growth Issues Increased Surface Area

• Surface area of opal film is much larger than an equivalent planar area:

$$\frac{A_{opal}}{A_{film}} = \frac{0.74 \times l \times w \times t}{4/3\pi r^3} \times \frac{4\pi r^2}{l \times w} = \frac{2.22t}{r}$$

• For a 10  $\mu$ m thick opal film with 200 nm diameter spheres:

 $A_{opal}/A_{film} = 222$  $A_{opal} = 0.089 \text{ m}^2$ 



## **Opal Infiltration:** Requirements



- Uniform Infiltration
  - Material must be distributed uniformly throughout the opal
- Controlled Filling Fraction
  - Must be able to precisely control the void space filling
- Conformal and Smooth Surfaces
  - Creates lower porosity infiltrations
  - Creates air pockets at the center of the opal voids, enhancing the PBG
- High Refractive Index, Transparent, & Luminescent Materials
  - For a full PBG, the refractive index contrast (with air) must be > 2.8
- ALD is the only technique to meet all of these requirements



## Inverse Opal: Fabrication



- Self-assembled silica opal template
  - 10  $\mu m$  thick FCC polycrystalline film, (111) oriented.
- Infiltration of opal with high index materials
  - ZnS:Mn n~2.5 @ 425 nm (directional PBG)
  - TiO<sub>2</sub> (rutile) n<sub>avg</sub>~ 3.08 @ 425 nm (omni-directional PBG)





## ALD of TiO<sub>2</sub>



#### Surface Roughness: planar TiO<sub>2</sub> films

- Large ALD temperature window allows optimization of surface morphology.
- Below 150° C, ultra-smooth amorphous film results (2 Å RMS roughness).
- 400°C, 2 hr. heat treatment forms anatase, Roughness increase of only 2 Å!
  - Refractive index increases from 2.5 to 2.85 (@425 nm).



#### 500° C Deposition



100° C Deposition

#### Low T ALD + Heat Treatment = Smooth, conformal, high index!

11 Nov. 2004

## ALD of TiO<sub>2</sub> at 100°C

(111)(•)





Georgia Institute of Technology





433 nm opal infiltrated with 20 nm of TiO<sub>2</sub>

433 nm opal infiltrated with TiO<sub>2</sub>

433 nm TiO<sub>2</sub> inverse opal

- TiO<sub>2</sub> infiltration at 100°C produces very smooth and conformal surface coatings with rms roughness ~2Å.
- Heat treatment (400C, 2 hrs.) of infiltrated opal converts it to anatase TiO<sub>2</sub>, increasing the refractive index from 2.35 to 2.65, with only a 2Å increase in the rms surface roughness.

J.S. King, et al., Adv. Mater. (in press).

E. Graugnard, et al.

## Georgia Institute XRD of Infiltrated Opals



XRD data for 100°C 433 nm infiltrated TiO<sub>2</sub> opal (lower curve), and same sample after 400°C 2 hour heat treatment (upper curve).



## **Optimized TiO<sub>2</sub> Infiltration**



- For small opal sphere sizes, uniform infiltration becomes difficult creating air cavities when the opal is inverted.
- Pulse and purge times were increased to optimize infiltration in opals with small sphere sizes.





#### 200 nm TiO<sub>2</sub> inverse opal

#### 433 nm TiO<sub>2</sub> inverse opal



## Anatase TiO<sub>2</sub> Inverse Opal





#### 433 nm inverse opal, ion milled (111) surface



## Anatase TiO<sub>2</sub> Inverse Opal





#### 433 nm inverse opal fracture surface



**TEM of TiO<sub>2</sub> Shells** 

- (a) TEM image of TiO<sub>2</sub> shell structures after annealing. The inset shows an electron diffraction pattern confirming the polycrystalline structure.
- (b) HR-TEM image showing lattice fringes that match the (101) planes of anatase TiO<sub>2</sub>.



Georgialnstitute of Technology

## Georgia Inverse Opal Reflectivity: Theoretical Comparison





- $TiO_2$  infiltration of 330 nm opal with ~88% filling fraction
- 2.65 Refractive Index
- Agreement: full index attained!

11 Nov. 2004

## Precise Digital Opal Infiltration



#### Void filling fraction of opal as function of ALD Cycles calculated from reflectivity

## TiO<sub>2</sub> Coating Thickness as function of ALD cycles



#### Optical verification of maximum filling fraction.

• ALD allows for ultra-fine control of opal infiltration.

Georgialnstitute of Technology

## Georgialnstitut Multi-Layer Inverse Opals







#### 330 nm sphere diameter

## Luminescent, high index multi-layered inverse opals fabricated using ALD

J.S. King, et al., submitted to Adv. Mater.

E. Graugnard, et al.

## Georgial Institute TiO2 Coated ZnO Arrays

## Template patterned growth, followed by ALD of TiO<sub>2</sub> was used to create novel 2D structures



Aligned ZnO nano-rods in a hexagonal matrix on a sapphire substrate.



# Aligned ZnO nano-rods coated with 100 nm of $TiO_2$ at 100°C.

11 Nov. 2004

## Georgia Institute TiO2 Coated ZnO Arrays





## Aligned ZnO nano-rods coated with 50 nm of $TiO_2$ at 100°C.

TEM image of a  $TiO_2$  coated ZnO nano-rod.

## **TiO<sub>2</sub> Bowl Arrays**

• Self-assembly for template patterning.

**(a)** 

**(b)** ALD coating  $TiO_2$  layer



Georgialnstitute of Technology



(c) Ion beam milling

(d) Toluene etch away PS spheres





#### X.D. Wang, et al., 1:30 pm Today X.D. Wang, et al., Nano Letters (2004).





## Summary



- ALD is an ideal deposition method for PC fabrication.
- Fabricated high quality inverse opal photonic crystals in the visible spectrum using ALD.
- TiO<sub>2</sub> ALD conditions optimized for complete, uniform infiltrations with smooth and conformal coatings.
  - Growth/Anneal protocol developed to form anatase inverse opals
- Precise control enables novel photonic crystal structures:
  - Inverse opals with void space air pockets (enhanced PBG)
  - Achieved maximum infiltration of 86%
  - Perfect match between reflectivity and calculated band structure
  - Multi-layered, luminescent, high index inverse opals
- Novel structures created with ALD
  - TiO<sub>2</sub>/ZnO aligned nano-rod arrays
  - TiO<sub>2</sub> nano-bowl arrays

## • ALD template infiltration is a pathway for photonic crystal band gap engineering.





- Curtis Neff
- Davy Gaillot
- Tsuyoshi Yamashita
- US Army Research Lab: S. Blomquist, E. Forsythe, D. Morton
- Dr. Won Park, U. Colorado
- Dr. Mike Ciftan, US Army Research Office: MURI "Intelligent Luminescence for Communication, Display and Identification"