Highly Tunable Photonic Band Gap in Inverse Non-Close-Packed Shell Structures

Davy P. Gaillot, Elton Graugnard, Jeffrey S. King and Christopher J. Summers

> School of Materials Science and Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0245

> > IEEE/LEOS 18th Annual Meeting Sydney, Australia 25th October, 2005

Outline

- Challenges for 3D PC
- Background
 - Inverse Shell Opals
 - Optical Properties & Limitations
- Inverse Non-Close-Packed Opals
 - Conformal Sacrificial Layer/Backfill Thru ALD
 - Experimental Achievement
 - Structures Modeling
 - PBG Mechanisms
 - PBG Width & Refractive Index Requirement (RIR)
 - PBG Tunability (Width & Location)
- Conclusions

Challenges

- Design 3D Photonic Crystal with:
 - Largest complete PBG possible for a given material
 - Lowest refractive index requirement (RIR)
 - PBG tunability over a wide spectral region
 - Easy implementation into electro-optic devices
- The fabrication process should be:
 - Reasonably simple to implement & reproduce
 - Bottom-up (Self-assembly) Top-down (ALD/CVD)
 - Low-cost, Reliable & Applicable to large scale devices
- Applications for 3D luminescent devices:
 - Phosphors, QD in Micro-Cavities

2005 Gaillot 4

Inverse Shell Opals

Inverted anatase TiO₂ opal in air (2.65/1)

Octahedral air pocket

- ALD/CVD conformal infiltration steps
 - 0.05nm/cycle for TiO₂
- Fcc structure prevents dielectric volume fraction >86% of interstitial air volume.
 - Trapped octahedral/tetrahedral air pockets within backbone

^{2005 Gaillot 5} **PBG Mechanisms & Limitations***

- Narrow complete PBGs (n = 3.45)
- High refractive index contrast required (*n* > 3.3)
- Dielectric volume fraction limited (0 to ~22%)
- Choice of high index, transparent materials is limited

^{2005 Gaillot 6} **PBG Mechanisms & Limitations***

- Narrow complete PBGs (n = 3.45)
- High refractive index contrast required (*n* > 3.3)
- Dielectric volume fraction limited (0 to ~22%)
- Choice of high index, transparent materials is limited

PBG Mechanisms & Limitations*

- Narrow complete PBGs (n = 3.45)
- High refractive index contrast required (*n* > 3.3)
- Dielectric volume fraction limited (0 to ~22%)
- Choice of high index, transparent materials is limited

2005 Gaillot 8

Inverse Shell Opals & Inverse Non-Close-Packed Structures

[111]

Inverse Shell Opal

- Air pores formed after template sintering & conformal infiltration
- Limited enhancement of PBG properties

Studied theoretically & experimentally

*Busch & John, Phys. Rev. E **58**, 3896 (1998) *John & Busch, J. Light. Technol. **17**, 1931 (1999) **Inverse Non-Close-Packed**

- NCP spheres interconnected w/ tubular channels
- Large enhancement of PBG properties
- Studied theoretically
- How to make and control these structures ?

*Doosje et al., J. Opt. Soc. Am. B 17, 600 (2000)

Inverse Non-Close-Packed Structure: 2005 Gaillot 9 **Sacrificial Layer Technique*** 2nd Layer **Sacrificial Layer (SL)** 2nd Layer SL **R**_{opal} 1c 1b **1**a **Backfill Layer** R $2R_c$ R_{s/} t_{BF}1 10 nm TiO2 **10 nm SL Backfill**

2005 Gaillot 11 Photonic Band Diagrams For Inverse Non-Close-Packed Shell Structures

- Large PBG obtained for many sacrificial layer/backfill values
- PBG width & location tuned with backfill infiltration thickness
- Thinnest backbone template yields
 - Maximum PBG width
 - Largest PBG tunability (width & location)

2005 Gaillot 12Photonic Band Diagrams:86% Vs. 100% Infiltrated Inverse NCP Structures

- 100% infiltrated structure yields
 - PBG behavior driven by two mechanisms
 - Higher PBG width value
 - Similar tunability range compared w/ 86% infiltrated structures

2005 Gaillot 13

Wavelength Tunability Vs. Conformal Backfill

		Inverse Opals	Inverse NCP Opals
Summary		Sphere contact point Air pocket	
PBG Width (%)	86%	~2.5	~7.5
for <i>n</i> =3.45	100%	~4.5	~10
RIR	86%	>3.3	>2.9
	100%	>3.0	>2.6
		Limited	High
PBG		• Template size	 Template size
		Sintering Material	 Material
Tunahility			• SL thickness
Tunability		• Infiltration 0/	 Infiltration %
			 Backfill thick.

Conclusions

- Conformal SL/Backfill technique offers:
 - High structural control of the template
 - Air pores tunability & open structure: *R_{SL}*
 - High degree of overlap w/o change in lattice constant
 - High structural control of the backbone template
 - High filling fraction with conformal backfill: *t*_{BF}
 - LOW-COST, RELIABLE & LARGE-SCALE UNIFORMITY
- Complete PBG properties framework introduced
 - Largest PBG width & smallest RIR
 - Highest PBG tunability (width & location)
- 100% infiltrated structures yield better PBG properties

Acknowledgements

- Supported under MURI project by Army Research Office under contract DAAA19-01-1-0603
- IEEE/LEOS Student Travel Grant Committee

Thank You!!!!!!

