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Abstract: A two-dimensional superlattice photonic crystal structure
is investigated in which the holes in adjacent rows of a triangular lattice
alternate between two different radii. The superimposition of a superlattice
on a triangular lattice is shown to reduce the photonic bandgap, intro-
duce band splitting, and change the dispersion contours so that dramatic
effects are seen in the propagation, refraction, and dispersion properties
of the structure. For single mode propagation, the superlattice shows
regions of both positive and negative refraction as well as refraction at
normal incidence. The physical mechanisms responsible for these effects
are directly related to Brillouin Zone folding effects on the triangular lat-
tice that lowers the lattice symmetry and introduces anisotropy in the lattice.
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5. J. Bravo-Abad, T. Ochiai, and J. Sànchez-Dehesa, “Anomalous refractive properties of a two-dimensional pho-

tonic band-gap prism,” Phys. Rev. B 67, 115,116 (2003).
6. W. Park and C. J. Summers, “Extraordinary refraction and dispersion in two-dimensional photonic-crystal slabs,”

Opt. Lett. 27(16), 1397 (2002).
7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals

for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74(10), 1370
(1999).

8. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J.
Quantum Electron. 38(7), 915 (2002).

9. T. Baba and M. Nakamura, “Photonic crystal light deflection devices using the superprism effect,” IEEE J. Quan-
tum Electron. 38(7), 909 (2002).

10. W. Park, J. S. King, C. W. Neff, C. Liddell, and C. J. Summers, “ZnS-based photonic crystals,” Phys. Status
Solidi B 229(2), 949 (2002).

11. T. Baba and T. Matsumoto, “Resolution of photonic crystal superprism,” Appl. Phys. Lett. 81, 2325 (2002).
12. W. Park and C. J. Summers, “Optical properties of superlattice photonic crystal waveguides,” Appl. Phys. Lett.

84(12), 2013 (2004).
13. C. J. Summers, C. W. Neff, and W. Park, “Active Photonic Crystal Nano-Architectures,” J. Nonlinear Optical

Phys. and Mater. 12(4), 587 (2003).
14. N. W. Ashcroft and N. D. Mermin, Solid State Physics (W. B. Saunders, 1976).

(C) 2005 OSA 18 April 2005 / Vol. 13,  No. 8 / OPTICS EXPRESS  3166
#6848 - $15.00 US Received 15 March 2005; revised 11 April 2005; accepted 12 April 2005

mailto:curtis.neff@mse.gatech.edu


15. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a
planewave basis,” Opt. Express 8(3), 173 (2001).

16. A. J. Ward and J. B. Pendry, “A program for calculating photonic band structures and Green’s functions using a
non-orthogonal FDTD method,” Comput. Phys. Commun. 112(1), 23 (1998).

17. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51(23),
16,635 (1995).

18. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic
crystal slabs,” Phys. Rev. B 60(8), 5751 (1999).

19. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114,
185–200 (1994).

20. L. Zhao and A. Cangellaris, “GT-PML: generalized theory of perfectly matched layers and its application to
the reflectionless truncation of finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 44,
2555–2563 (1996).

21. P. J. Russell and T. A. Birks, “Bloch wave optics in photonic crystals: physics and applications,” in Photonic
band gap materials, C. M. Soukoulis, ed., no. 315 in NATO ASI series. Series E, applied sciences, p. 71 (Kluwer,
1996).

1. Introduction

The dispersive properties of two-dimensional photonic crystals (2D PCs) are of great interest
because of the potential they show for extraordinary refraction effects beyond the capabilities
of conventional prisms and gratings [1, 2, 3, 4, 5, 6, 7] and their potential applications in op-
tical systems such as wavelength-division multiplexing (WDM) [7, 8, 9]. In 1998, Koska et
al. observed the superprism effect using a pseudo-2D ‘autocloned’ structure [3], and more re-
cently, the superprism effect has been predicted [6, 10] and demonstrated [8] in 2D PC planar
waveguide configurations. Wavelength dispersive effects in 2D PC structures suitable for WDM
were confirmed by Wu et al. who showed a change of 10 ◦ in the incident beam refraction angle
when the incident wavelength was scanned by 20 nm [8]. In 2002, Baba et al. quantified the res-
olution of the superprism effect in photonic crystals by introducing a resolutions parameter q/p
where p represents the degree of beam divergence, p = (∂θ r/∂θi), and q represents the wave-
length sensitivity, q = ∂θr/∂ (a/λ ), where θr is the propagating beam angle in the PC, θ i is the
incident beam angle, a is the lattice constant, and λ is the freespace wavelength [11]. Through
their analysis, they found that although the resolution of a superprism is sufficient (q/p > 75)
to use in WDM systems, the effect in triangular lattice PCs is not strong enough to allow device
structures smaller than 1 cm2 [11]. Thus, alternate structures and PC configurations must be
investigated for improvement in superprism performance.

In previous work, we reported a 2D PC triangular lattice whose holes were infiltrated with
an electro-optic (EO) or nonlinear material (NL) so that an alternating bias of adjacent rows of
the lattice imposed a superlattice (SL) modulation of their dielectric constants and introduced
Brillouin zone (BZ) folding effects which improved the dynamic tunability of refraction in 2D
PCs [12, 13]. In this work, we propose a new lattice configuration that incorporates two differ-
ent hole radii, Fig. 1(a), to create a SL-PC structure that introduces a variety of unique optical
phenomena such as positive and negative refraction at a single excitation wavelength, normal
incidence refraction, and high dispersion: an order of magnitude greater than that predicted for
the triangular lattice. The unit cell definition of the SL now consists of two holes per lattice
point so that the basis vectors are orthogonal as opposed to being inclined at 60 ◦, as in the
triangular lattice. This new structure lowers the crystal symmetry through BZ folding and cre-
ates a strong interaction between the photonic dispersion surfaces. As a result the dispersion
response becomes highly asymmetrical, thereby introducing significantly different phenomena
than observed in either for triangular or square lattices.
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Fig. 1. Details of the SL structure.(a) An illustration of a SL slab waveguide. (b) A
schematic showing the parameters of the structure. (c) Reciprocal lattice representation.

2. The superlattice structure

Figures 1(a) and 1(b) respectively, show an illustration of the SL-PC waveguide structure and a
schematic that describes the parameters of the structure. The structure consists of a triangular
lattice of circular holes (dotted triangle) of two different radii such that adjacent rows, i and j,
consist of a single radius, r1 or r2, respectively. The [i, j] rows introduce an additional period-
icity in the lattice in the y-direction. To incorporate this additional periodicity, a Bravais lattice
with a two-point basis is used so that the new basis vectors a1 = a(0,

√
3) and a2 = a(1,0)

define a rectangular unit cell, where a is the lattice constant of the underlying triangular lattice.
As in solid-state physics, a monatomic lattice with an n-atom basis (in the present case n = 2
holes) introduces a structure factor, SK, given by

SK =
n

∑
j=1

f j(K)eiK·d j , (1)

where K is a reciprocal lattice vector, f j is the form factor, and d j is the coordinate of the j th

hole [14]. In the present discussion, the form factor is dependent upon the radius of the j th

hole, i.e. identical holes have identical form factors. From a 1 and a2, the primitive reciprocal
lattice vectors are given by b1 = (2π/a)(0,1/

√
3) and b2 = (2π/a)(1,0), which also defines a

rectangular area and is shown by the solid lines in Fig. 1(c) . Since any reciprocal lattice vector
can be written as a linear combination of b1 and b2, a general expression for K is given by

K = n1b1 +n2b2, (2)

where n1 and n2 are integers. Substituting Eq. (2) into Eq. (1) and using d 1 = (0,0) and d2 =
(a/2)(

√
3,1) gives

SK = f1(K)+ (−1)n1+n2 f2(K). (3)

If r1 = r2, Eq. (3) shows that the structure factor vanishes for those reciprocal lattice points
whose coordinates are an odd sum with respect to the primitive vectors. This converts the rec-
tangular reciprocal lattice into the hexagonal reciprocal lattice of triangular lattice which is
indicated by the dotted lines in Fig. 1(c).

The new symmetry directions of the rectangular BZ are labeled in Fig. 1(c) and placed over
the real lattice for reference in Fig. 1(b). As a consequence of the different shapes of the trian-
gular lattice BZ and the SL BZ, those k-vectors that lie outside of the rectanglar BZ, but within
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the hexagon of the triangular BZ are translated into the rectangle by a multiple of b 1 and b2.
Thus, these points are ‘folded’ back into the rectangular BZ, which is smaller and of lower
symmetry [12, 13]. In total, there are now two equivalent X and Y points and four equivalent
M points in the first BZ because of the SL. In addition, the irreducible BZ transforms from a
triangle into a rectangle comprising 1/4 of the first BZ.

2.1. Superlattice strength

The strength of the SL modulation is controlled by ∆r = r1 − r2 and is characterized by the
radius ratio, r2/r1, which incorporates the relative sizes of the two holes. For the structures in
this paper, r1 was held constant at 0.35a while r2 was decreased. Thus, as r2/r1 decreases, the
SL strength, or modulation, increases. In a simplified approximation, the addition of dielectric
material as r2 is decreased can be used to calculate an effective ε for r2 holes. For a pure 2D
structure, this involves averaging the dielectric constant of the area of material added over the
entire area of a r1 hole. Assuming the additional material has the same dielectric constant as
the background material, εb, the effective dielectric constant of a row j hole is given by

εeff, j = εb

(
1−

(
r2

r1

)2
)

+ εc,i

(
r2

r1

)2

, (4)

where εc,i is the dielectric constant inside a row i hole. This equation shows that the magnitude
of the dielectric modulation between rows is directly related to the difference between the hole
sizes. For example, a change in radius of ∆r = 0.05a, from r1 = 0.35a to r2 = 0.3a, corresponds
to a r1 hole with εc = 3.918, equivalent to an index change ∆n = 0.979 between [i, j] rows
for εb = 12. Thus, radius modulated SLs with strengths r2/r1 = 0.857 and 0.571 introduce
an index modulation equivalent to ∆n = 0.979 and 1.90, respectively, between adjacent rows,
clearly showing that the magnitude of the SL modulation is unprecedented in comparison to the
previously reported SL which is limited by the NL properties of the material infiltrated into the
holes [12, 13]. For this reason, the radius modulated SL is unique in its impact on this lattice
structure. Naturally, the effective index method is an oversimplification, and it is included here
for illustrative purposes and for comparison with the previously reported SL structure. Since
it neglects the actual change in the dimensions of the dielectric/air interface for each hole, the
effective index method was not employed in the calculations, but more appropriately, the hole
radii were defined in the calculations to accurately model the SL structure.

3. Numerical results and discussion

For this study, band structures (ω vs. k relationships) and dispersion contours (k vs. k relation-
ships) of the SL structure were calculated for both the pure 2D and the 2D slab waveguide
configurations using numerical methods with periodic boundary conditions. For the pure 2D
structures, a freely available plane wave expansion (PWE) software package was used because
its speed of convergence and relatively low computational load allowed a detailed analysis of
the entire k-space dispersion surface [15]. On the other hand a 3D finite difference time-domain
(FDTD) code that was highly modified from that of Ward and Pendry was used to model the
2D slab waveguide structure [16, 17, 6]. A full 3D calculation was necessary because the finite
thickness of the SL-PC slab waveguide structure introduces guided modes and light confine-
ment effects [6, 18]. For both calculation methods, periodic boundary conditions were used
in the x-y plane (see Fig. 1(a)) making them infinitely extended in these directions. In the z-
direction, the PWE calculation assume that the holes and the slab were infinitely extended,
while for the 3D FDTD calculations, the computational cell was truncated in the z-direction
using a Berenger-type perfectly matched layer (PML) boundary condition on the top of the
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cell and a mirror boundary condition on the bottom of the cell [19, 20]. The FDTD computa-
tional cell consisted of a dielectric slab adjacent to the mirror boundary followed by an air layer
which leads into the PML. The placement of the mirror boundary allowed an increase in com-
putational speed because it reduces the computational space by one half and allowed selection
of even (TE-like) or odd (TM-like) modes according to their symmetry across the mirror plane.

For both structures, the slab dielectric was taken to be εb = 12.0 and the holes were air εc =
1.0. For the FDTD calculations, the slab waveguide was surrounded by air and the thickness was
chosen to be 0.5a, which allows single mode guiding while maintaining sufficient thickness for
a high effective index of refraction of the slab. A slab that is too thin will have a lower effective
index, thus increasing the frequency of the bands we are studying closer to the cutoff condition
of the structure which is governed by the cladding, or in our case, the light line ω = ck [18].
Various radius ratios ranging from 1 to 0.571 were examined to observe the effect of the SL
strength on the band structures and dispersion contours for the TE modes in the 2D SL-PC
and TE-like modes in the 2D SL-PC slab waveguide. A similar analysis can be made for TM
polarization where we have observed the same effects.

Fig. 2. Photonic band diagrams for SL structures calculated using the PWE method for (a)
r2/r1=1.0, (b) 0.857, and (c) 0.571.

3.1. Photonic band properties

The results of the PWE calculations are presented in Figures 2(a), (b) and (c) which show the
band structures for TE polarization with r2/r1 equal to unity, 0.857 and 0.571, respectively,
for a constant r1 = 0.35a. Similar results were obtained for the slab waveguide configuration
with FDTD calculations. As expected, for r2/r1 = 1, the band structure was identical to the
conventional triangular lattice after accounting for BZ-folding. However, the band structure
is strongly affected by increasing the SL strength and several effects are predicted. The most
pronounced is on the full PBG, which decreased rapidly as the SL strength is increased as
indicated by the shaded boxes. For r2/r1 = 0.875 (0.571), the PBG was reduced in width by
31.5% (77.9%) for the 2D structure and by 30.6% (75.8%) for the slab waveguide. The second
observation was that certain bands split into two states at many places in the BZ, some of
which are highlighted by the dashed ellipses in Fig. 2(b) and (c). The separation of the two
states is directly proportional to the SL strength and is related to the change in the distribution
of electromagnetic (EM) energy as discussed below. The time-averaged energy density of the
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Fig. 3. Time-averaged magnetic-field energy density of the Hz field component for (a) and
(b) the degenerate states at the bottom of the air band at the M point of the triangular lattice
and (c) and (d) the 3s and 3p states of the 2D PC-SL with strength 0.571.

Hz component of the TE mode was calculated using PWE at the M point for each strength of the
SL in Fig. 2. For the triangular lattice, Fig. 3(a) and (b) show the degenerate states at the bottom
of the air band at the M point when the SL unit cell is applied to the lattice. The mode with field
nodes located in row i is indistinguishable from the mode with nodes in row j and their energy
distributions are equal. When the SL strength is increased, the symmetry of the triangular lattice
is broken as r2 decreases, resulting in the lifting of this degeneracy. As a consequence of the
radius change, the dielectric area between row j holes increases causing the mode in row j to
become more ‘s-type’ in shape (in analogy with solid-state physics nomenclature), while the
other mode (in row i) becomes more ‘p-type’, as shown in Fig. 3(c) and (d) for a SL strength
of 0.571. Hence in Fig. 2 (b) and (c), the bands corresponding to these field patterns are labeled
3s and 3p where the numeral indicates the band number and the letter indicates the field mode
shape. As shown in the band diagram, the 3s mode decreases in energy while 3p increases in
energy as the SL strength is increased. Consequently, the smaller the hole size ratio, i.e. the
stronger the SL modulation, the larger the separation of energy localization and subsequent
band splitting.

3.2. Dispersion contours and refraction properties

Figure 4(a) compares the dispersion contours in the irreducible BZ for three SL-PC structures.
The solid lines are the BZ folded contours of the triangular lattice at ω n = 0.3445. Notice
that the contours must converge to a point on the BZ boundaries Y-M and X-M as shown
in Fig. 4(a) to be consistent with the number of intersection points of the 3 rd band with the
constant frequency line (dashed line in Fig. 2(a)) along the directions Y-M and X-M. When
the third band splits into two distinct states, 3s and 3p, with the increase in SL strength, two
dispersion surfaces in k-space with modified curvatures are created. Consequently, the contours
of these two bands have different shapes than the parent band of the original triangular lattice.
This is shown by the dashed lines and scattered dots in Fig. 4(a), which are the contours at
ωn = 0.3185 and 0.3783, respectively, for a 2D SL-PC and a slab waveguide SL-PC both with
a strength of 0.857. The modification of the curvature is especially evident along the boundaries
of the first BZ where the Bloch condition requires that the contours are continuous and smooth
across the BZ boundary in an extended zone scheme. Therefore, the contours must intersect
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Fig. 4. (a) TE polarization equi-frequency contours for the SL structure calculated with the
PWE method for a strength of 1.0 (solid line) and 0.857 (dashed line) and with the FDTD
method for a radius ratio of 0.857 (scattered dots), gray lines indicate the construction lines
for a beam of ωn = 0.3185 incident from air onto the PC. (b) Refraction angles with change
in incident angle for r2/r1 = 0.857 for a range of ωn with 1% spacing between frequencies
(group of lines) and for a 2D slab waveguide structure (scattered plot).

the BZ boundary at a 90◦ angle resulting in a strong, local modification of the curvature as it
approaches the Y-M and X-M boundaries. As a consequence, the contours appear to ‘repel’ one
another along the BZ boundary in direct proportion to the strength of the SL modulation, rather
than converge to a single point as in the unmodulated structure. Thus, the optical properties of
a SL PC can be tailored to a specific application by adjusting the SL strength.

The combination of the symmetry reduction, the band splitting, and the continuity condition
results in contours with highly modified curvatures, especially near the BZ boundaries, which
gives rise to unique optical effects. Fig. 4(b) presents the results of wave-vector analysis on
the dispersion contours from the 3p band of the 2D and the slab waveguide SL-PC when the
contours in the upper right hand corner of the BZ radiating from the M point in Fig. 4(a) are
used to calculate the direction of the Poynting vector [21]. The excitation beam is incident on
the PC from air and is taken to be parallel to the Γ–M direction, and the gray construction lines
indicate the conservation of the tangential component of the wave-vector, k ‖, across the air/PC
interface at ωn = 0.3185 as the incident angle, θ i, of the beam is increased in a positive (counter-
clockwise) or negative (clockwise) manner. As θ i is increased, the construction lines intersect
the contour closer to the BZ boundary where the curvature modification is highest. Since the
Poynting vector is normal to the contour surface at these intersections, the high curvatures at
these points show that light will be strongly refracted as shown in Fig. 4(b). In this figure,
the group of solid and dashed lines represent refraction in a 2D SL-PC structure at various ω n

-values spaced 1% in frequency, while the dotted curve is from a slab waveguide SL-PC at
ωn = 0.3783. The SL-PCs presented in Fig. 4(a) are highly dispersive at θ i larger than −15◦.
For example, for the SL strength shown, a 1% change in ω n produces a 34◦ change in refracted
angle, ∆θr, for θi = −15◦. This frequency dispersion increases with increase in SL strength
as seen for r2/r1 = 0.571 where a 1% change in frequency (ω n = 0.2805 to 0.2833) produces
∆θr = 65◦ at θi = 6.5◦. Also, giant refraction effects are observed in the SL-PCs in which an
incident beam can be steered over a wide range of angles for a small change in incident angle,
thus producing a very large steering coefficient ∆θ r/∆θi. For the contours plotted in Fig. 4(a),
the 2D SL-PC structure shows ∆θr = 70◦ when θi is increased from 0◦ to 15◦ at ωn = 0.3155 for
a ∆θr/∆θi = 4.67. The slab waveguide structure shows a comparable response at ω n = 0.3783
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with ∆θr/∆θi = 4.11, which steers the refracted beam > 78◦ for ∆θi ∼ 19◦. Increasing the SL
strength to 0.571 increases this effect to ∆θr/∆θi = 12.15 at ωn = 0.2805 in the 2D structure
which produces a beam steering > 79◦ for ∆θi = −6.5◦.

In addition to large superprism and giant refraction effects, as demonstrated earlier, the SL-
PC shows unique refraction regimes in comparison to the triangular lattice. For instance, the
refraction response of the triangular lattice is symmetric around high symmetry directions with
no refraction at normal incidence [4, 6, 10]. This is the case for refraction calculated using the
solid curve in the upper right corner of the BZ in Fig. 4(a) which is relatively flat and intersects
the Γ–M line at a 90◦ angle. However, in a SL-PC with a strength of 0.857, the curvature
of this contour is dramatically modified and is no longer normal to the Γ–M direction and is
now asymmetric. Consequently, a beam at normal incidence will be refracted as shown in Fig.
4(b) for all of the refraction curves at θ i=0. For example, a beam of frequency ωn = 0.3155
normally incident on a 2D SL-PC with strength 0.857 will be refracted 15 ◦, and in a SL-PC
slab waveguide of the same strength this value is almost 20◦ at ωn = 0.3783. In addition, the
asymmetry of the contour about the Γ–M direction creates a refraction response that changes
from positive refraction to negative then back to positive as θ i is increased from −40◦ to +15◦.
Again, this is a unique refraction response than what is reported in the triangular and square
lattices where there is only a single refraction regime (either positive or negative) depending on
the constant frequency chosen.

4. Conclusion

We have introduced a new superlattice photonic crystal structure in which alternating rows
of holes of different radii create an additional modulation in the lattice. This structure intro-
duces a wide range of new phenomena by providing the ability to manipulate the photonic
dispersion surfaces with a high degree of control, thereby redefining the optical response (prop-
agation, refraction, and dispersion) of 2D PCs. The addition of this lattice design parameter
greatly increases the functionality and flexibility of PCs in optical systems and allows for a
greater strength in the SL modulation, defined by the radius ratio, r 2/r1. Unique phenomena
are observed in this structure such as (1) normal incidence refraction, (2) highly asymmetrical
refractive properties that produce regions of positive and negative refraction that are strongly
dependent on θi, and (3) extremely large refraction (∆θ r/∆θi = 12.15) and dispersion (4◦/nm
at 1.55µm) that will enable smaller device geometries for WDM, beam steering, and micro-
spectrometer applications through the larger resolution parameter q/p that can be potentially
enhanced an order of magnitude larger by further optimization of the structure. Additionally,
the introduction of EO and/or NL materials into the lattice will provide yet another degree of
design freedom and the ability to dynamically control the optical properties of devices incor-
porating the SL structure.
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