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Evaluation of Self-Collimated Beams in Photonic
Crystals for Optical Interconnect
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Abstract—Self-collimated beams and photonic bandgap mirrors
in photonic crystals are evaluated for applicability in an on-chip
interconnect system. Simulations using the plane-wave expansion
and finite-difference time-domain methods are utilized to design
and evaluate the theoretical performance of these systems, called a
virtual waveguide due to borderless confinement of the signal. The
effect of systematic and random fabrication errors on the perfor-
mance is characterized. Coupling efficiency is virtually unaffected
by misalignment, but is found to be a strong function of the length
of the waveguide and the frequency of light. Additional routing ca-
pabilities of sharp 90 turns and signal crossings with no crosstalk
are demonstrated. Photonic crystal virtual waveguides are ideal
structures for on-chip optical signal routing.

Index Terms—Integrated optics, optical interconnect, photonic
bandgap, photonic crystals, self-collimation.

I. INTRODUCTION

TWO OF THE major challenges of integrating optical de-
vices onto a chip are the difficulty of routing an optical

signal and the high sensitivity to misalignment when coupling
into a waveguide. In addition, crosstalk between waveguides
in proximity, losses from sharp turns, and cross-coupling when
signals intersect make optical routing difficult. The unique dis-
persion property of a square lattice photonic crystal slab is in-
vestigated to address these issues.

Photonic crystals display photonic band properties similar
to semiconductors such as bandgaps and defect modes [1]–[3].
Analogous to the Fermi surfaces for electronic band structure,
the allowed wavevector curve in a photonic crystal reveals
the vectors and, thus, the propagation direction, of photons
with a specified energy. When the allowed wavevector curve
becomes linear, self-collimation occurs where an optical beam
is restricted from spreading [4]–[8]. A virtual waveguide,
where an optical beam is confined by the photonic crystal
structure without any additional physical boundaries is formed.
In addition, it is possible to make sharp 90 bends utilizing
interfaces with total internal reflection [7], [8].

This paper outlines the design process of photonic crystal vir-
tual waveguides using simulation data of structures made from
silicon and silica for application in on-chip interconnects. Addi-
tional simulations are conducted to evaluate the characteristics
of the virtual waveguide system.
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Fig. 1. Geometry of the photonic crystal structure investigated for the virtual
waveguide.

II. THEORY AND DESIGN

Photonic crystals are a class of periodic media, where the di-
electric constant is modulated in one, two, or three dimensions.
Fig. 1 shows an example of a two-dimensional (2-D) photonic
crystal slab structure that is investigated in this paper. This struc-
ture consists of cylindrical pillars arranged in a square lattice.
Confinement in the third dimension can be achieved through
index contrast as in an ordinary slab waveguide. An effective
media method allows 2-D simulations to provide useful conclu-
sions for this three-dimensional (3-D) structure [9]–[11]. The
effective media method results in lower indices for the materials
corresponding to mode structure in the slab. Structures using sil-
icon and silica are chosen to ensure compati-
bility with conventional semiconductor processes where the di-
electric constant of silicon is taken lower than its value of 12.1
at 1.55 m to account for the out of plane confinement. The
propagation of electromagnetic waves in a photonic crystal is
characterized using Maxwell’s equations in linear media with
no sources

(1)

where and are the electric and magnetic fields and and
are the dielectric constant and magnetic permeability. In this

paper, two numerical methods were used to solve the Maxwell’s
equations in the photonic crystal: the plane-wave expansion
(PWE) method and the finite-difference time-domain (FDTD)
method.
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A. PWE Method

In the PWE method, the band diagram of a photonic crystal,
which plots the wavevector versus the frequency of
electromagnetic waves that propagate in the photonic crystal, is
solved. The Maxwell’s equations are rearranged to depend only
on the or the field in the form:

(2)

where is the speed of light. The dielectric constant and the
electric field are now periodic functions in space. Maxwell’s
equations are solved by expanding each periodic function in re-
ciprocal ( ) space and solving a system of equations numer-
ically to calculate the relationship between and . In this
paper, 625 terms of the expansion are used to provide suffi-
cient accuracy for design purposes. The band diagram and the
allowed wavevector curves are plotted inside the first Brillouin
zone in the 2-D square lattice. Once the versus relation-
ship is solved, the direction of energy propagation is found by
taking the normal direction to the allowed wavevector curve,
or the constant curve in space. The curvature of the al-
lowed wavevector curve determines the degree of beam spread
inside of the photonic crystal. Therefore, a linear section in the
curve gives rise to self-collimated beams traveling in a direction
normal to the line. In addition, frequencies where there are no

values in the solution of the Maxwell’s equation correspond
to bandgaps, where the photonic crystal behaves as a perfect
mirror. Since Maxwell’s equations scale with the length scale
of the unit cell, a normalized frequency is used, ,
where is the lattice constant of the photonic crystal. Normal-
ization allows the results to be interpreted and scaled to fit a
design wavelength.

The geometry in Fig. 1 is simulated using silicon pillars in
silica and silica pillars in silicon. The band structures and al-
lowed wavevector curves for the pillar radii varying from 0 to

are calculated. The structure with silicon pillars of radius
in a silica matrix is found to exhibit strong self-collimation

in the - direction on the top edge of the first band for the TE
polarization. The band diagram and allowed wavevector curves
for this structure are shown in Figs. 2 and 3.

As shown in Fig. 2, between normalized frequencies of
0.28 and 0.33, a bandgap exists where any incident beam
will be totally reflected. The section of the band diagram
below the bandgap and between the and frequen-
cies – exhibits self-collimation. The allowed
wavevector curves, shown in Fig. 3, change from convex to
concave along the - line (dashed bold line) as the fre-
quency is increased from to . The allowed
wavevector curve for is completely flat and normal
to the - line. Therefore, a Gaussian beam incident on the
photonic crystal along the diagonal of the unit cell with a
normalized frequency of 0.26 is expected to exhibit the highest
degree of self-collimation.

The most common wavelengths for optical signals are
850 nm, 1.3 m, and 1.55 m. However, since silicon absorbs
light below 1.06 m, only the 1.3 m and 1.55 m cases can be
considered. The lattice constant , to achieve self-collimation
for the design wavelength is determined by equating the design
wavelength to a normalized frequency of 0.26. The formula for

Fig. 2. TE mode band diagram of the square lattice photonic crystal of silicon
pillars in a silica matrix with radii of 0.2 a in the reduced Brillouin zone.

Fig. 3. Allowed wavevector curve showing a flattening of the curve along the
�-M direction resulting in a self-collimated beam at a normalized frequency of
0.26.

the normalized frequency is rearranged to find that ,
where is the wavelength of the incident radiation. The lattice
constants are 0.338 m and 0.403 m for 1.3 m and 1.55 m
wavelengths, respectively. The silicon pillars have
diameters of 135.2 nm and 161.2 nm, respectively, which are
within the processing capability of state of the art lithography.
The values for 1.55 m incident wavelength will be used for
the rest of this paper, but all conclusions can be directly applied
to a system with 1.3 m wavelength by scaling the structure
accordingly.

B. Finite-Difference Time-Domain (FDTD) Method

The second simulation method used in this paper is the FDTD
method. In this method, Maxwell’s equations are discretized so
that the and fields are solved from the and fields at a
previous time step and the material constants of a grid. The 2-D
TE mode FDTD is utilized in this paper

(3)

Each field component is updated from the data at the previous
time step. The performance of the virtual waveguide is simu-
lated by following the and field values as a Gaussian beam,
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Fig. 4. Gaussian beam with normalized frequency of 0.26 propagating in
(a) silica and (b) photonic crystal virtual waveguide. Significant spreading is
seen in silica while the photonic crystal keeps the beam intact.

initiated inside of the grid, travels through, reflects from, re-
fracts in, and resonates inside of the photonic crystal. The grid
is bound by a Berenger’s perfectly matched layer (PML) to ab-
sorb any radiation that propagates to the edge of the simulation
grid. Lossless media are used in the simulation.

The Gaussian beam full width at half max (FWHM) used
throughout this paper is 300 grid points wide or about 8.5 m
for the 1.55 m incident wavelength. This width corresponds
to mode field radii of some single mode fibers available and
is a realistic beamwidth for analysis. To verify the self-colli-
mation predicted by the PWE simulation, an FDTD simulation
grid is created using 20 grid points for each side of the non-
primitive unit cell containing two pillars diagonally placed for
propagation in the - direction. The Courant stability limit is
utilized for the time step. Fig. 4 depicts the plot of the time-av-
eraged electric field intensity pattern of a Gaussian beam prop-
agating in silica compared with inside of a virtual waveguide
for normalized frequency of 0.26. After propagation through
120 m, or 4250 grid points, no observable spreading occurs
in the virtual waveguide compared with significant spreading in
the silica slab.

A combination of PWE and FDTD methods is used to eval-
uate the performance of the photonic crystal virtual waveguide
consisting of the silicon pillars in a silica matrix.

III. RESULTS AND DISCUSSION

A. Tolerance to Fabrication Errors

Many proposed integrated optics devices rely on resonance
for achieving their functionality. This factor contributes to very
stringent fabrication tolerances that make applications of these
devices difficult beyond the simulation realm. Photonic crystals
also suffer from this difficulty in applications utilizing defect
resonant modes, where a small deviation in size or spacing can
dramatically change the performance of the device. However,
self-collimation occurs in a photonic crystal over a range of fre-
quencies, so small errors can be accommodated.

A FDTD grid measuring 3000 7000 grid points is filled
with the photonic crystal except for a 70 grid wide region
of isotropic silica denoting the input plane. The beamwidth

Fig. 5. Percentage of beam expansion after 171 �m of propagation in a
self-collimating photonic crystal compared with three isotropic media.

was recorded after propagation through 6000 grid points,
or 171 m, from the incident plane and compared with the
incident beamwidth for a photonic crystal filled grid and with
several isotropic media. The beamwidth expansion after trav-
eling 171 m as a function of wavelength is plotted in Fig. 5.
The range of wavelengths where the beam spread is under
20% spans almost 50 nm centered on 1.55 m. Self-collimated
beams exhibit a dramatic decrease in the beam expansion over
a wide frequency range compared with the case of pure air,
silica, and silicon. The beam spreads in the isotropic media are
calculated using the Gaussian beam spread equation

(4)

where is half of the FWHM at the beam waist, is half
of the FWHM after traveling a distance , and is the index of
refraction of the isotropic media.

Two types of errors are investigated in this study: systematic
error and random error. Systematic error is modeled as a uniform
increase/decrease of the pillar size which can result in fabrica-
tion from over or under development or exposure of the photore-
sist, as well as subsequent etch or deposition processes. All other
factors remained constant compared with the previous simula-
tion. Systematic errors of % and % are simulated and
the results plotted in Fig. 6. For 2.5% error in either direction,
the additional beam spread at 1.55 m is only 10%. The gen-
eral shape of the beam expansion curve remains constant, while
larger pillars shift the minimum beam expansion toward larger
wavelengths due to an increase in the average refractive index
that lowers the band structure. The data of the % error show
that the beam expansion is more sensitive to positive error in ra-
dius than a negative error. This is due to the higher slope of the
beam expansion curve toward the shorter wavelength. In addi-
tion, an increase in the radius increases the mean dielectric con-
stant by a larger factor than a decrease in the radius decreases its
value. With a % error, the beamwidth increases by less than
30%. Even with 5% error in the pillar sizes, the overall shape of
the curve is intact so a tunable laser can adequately compensate
for the error. Such robustness is rarely seen in resonant optical
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Fig. 6. Beam expansion for systematic error ranging from �5% to 5%
showing a shift in the wavelength of minimum beam expansion.

Fig. 7. Beam expansion for pillar radii with a random distribution.
Self-collimation remains intact with the �1:25% error.

devices where a large Q factor is necessary to achieve good de-
vice performance resulting in a very narrowband of operational
frequencies [12].

In addition to systematic errors, random errors are simulated.
Random errors can occur at any step of the fabrication process,
where deviations or fluctuations within a process step can in-
troduce error among the features. Random and normal distri-
butions of the diameter about the mean value at % and

% are simulated. For the random distribution, the pillar
sizes are uniformly distributed among any value between the
two extremes of the range. In the normal distribution, the pillar
sizes follow a normal “bell curve” distribution with a standard
deviation of 2.5% and 1.25%, respectively. For each distribu-
tion, a set of five simulations are conducted and averaged. The
results for the random distribution of pillar sizes are graphed in
Fig. 7. The % case retains good collimation with a slight
shift toward longer wavelengths, but the % case results in
large scattering resulting in the beam not being effectively con-
fined. The shift of the minimum beam expansion wavelength is
attributed to the higher average index resulting from the area of
the dielectric showing an asymmetric relation to the radius. The
results for the normal distribution of error show that with only
1.25% error, the beam loses its self-collimating characteristic.
The normal distribution has a finite probability of pillars that
are significantly larger or smaller than the average size. When a

Fig. 8. Beam expansion for pillar radii with a normal distribution. A standard
deviation as small as 1.25% destroys the self collimation.

pillar has high deviation from its surroundings, it acts as an ef-
fective scattering center rather than a slight perturbation. Thus,
the beam quickly loses its shape with increasing error, as shown
in Fig. 8. The analysis of error tolerance reveals that systematic
error results in a shifting of the self-collimation wavelength and
that small random errors among the pillar sizes are acceptable,
but even a small number of pillars with large deviations from
the mean size can destroy the performance. A nm range in
the pillar diameters can be accommodated, while retaining good
self-collimation.

B. Coupling Efficiency Analysis

Alignment of the optical signal from a fiber or an optical
backplane onto an optical chip is difficult and costly requiring
specialized connectors and devices to achieve good coupling.
Direct fiber to semiconductor waveguide connection is further
plagued by the large difference in the mode field size inside
of each medium, as well as Fresnel losses from a twofold
difference in the index. Photonic crystal virtual waveguides
hold a distinct advantage over conventional dielectric waveg-
uides since the propagation inside is analogous to a free-space
medium with no dispersion along the specified directions. As
long as the beamwidth is significantly larger than the periodicity
of the photonic crystal, misalignment will cause no difference
in the coupling efficiency.

The tolerance to misalignment is verified by FDTD simula-
tions of a 1.55- m wavelength Gaussian beam propagating from
air into a PML terminated photonic crystal by comparing the
time-average power through the interface plane to that of the
incident beam. Changing the center of incidence along the unit
cell results in a deviation of power of less than 0.001% con-
firming that a beamwidth of 20 times , the lattice parameter, is
sufficiently wide for local alignment with the pillars to have a
negligible effect on the beam. A coupled power of 75.6% was
obtained for the coupling coefficient.

To further increase the coupling efficiency, the dielectric con-
stant of the surrounding media is changed and the effect of fi-
nite length is investigated. The results in Fig. 9 show that with a
higher dielectric constant, the reflected power is decreased due
to better index matching. In addition, the reflection coefficient
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Fig. 9. Reflection coefficient with respect to the outside dielectric constant.
The reflection coefficient oscillates to nearly 0 for outside dielectric constant of
2 and 3 for a photonic crystal of length 28.5 �m.

Fig. 10. Reflection coefficient with respect to the length of the photonic crystal
for an outside dielectric constant of 2. A longer photonic crystal has a smaller
oscillation period.

oscillates from a value close to zero to a maximum reflection
value dependent on the wavelength. This phenomenon is analo-
gous to the behavior of a low reflectivity cavity resonator which
has a transmission peak spacing in frequency of ,
where is the length of the cavity. Therefore, slightly changing
the length or the refractive index of the virtual waveguide gives
the ability to tune the minimum reflectivity to the design wave-
length. An analysis of the reflected power while changing the
length of the photonic crystal region, shown in Fig. 10, confirms
that the period of the oscillation follows the trend from the res-
onator analogy.

C. Evaluation of Routing Functionality

Optical signals are more difficult to route compared with
electrical signals due to restrictions on the radius of curvature of
turns in a waveguide. Optical integrated devices are often much
larger than their electrical counterparts due to this inability
to route signals in a compact manner. Semiconductor waveg-
uides using high-index materials offer better performance, but
suffer from difficulties in coupling, such as misalignment and
coupling loss from silica and polymer low-index waveguides.
Photonic crystal virtual waveguides provide a novel media,
ideal for routing optical signals compatible with free-space and
low-index waveguides.

Fig. 11. Band diagram showing the overlap of the bandgap frequencies for
the case of r = 0:3 to the self collimating frequencies for r = 0:2a.

Fig. 12. Sharp 90 bend in a photonic crystal virtual waveguide through the
use of a photonic crystal mirror utilizing the bandgap effect.

One advantage of photonic crystals originates from its sym-
metric, periodic structure. Rotations of 90 in square symmetry
are invariant, resulting in self-collimated beams traveling in or-
thogonal directions. This inherent orthogonality creates a con-
venient Cartesian coordinate system to design the virtual wave-
guide structure. In addition, the inherent grid system insures that
devices and features are perfectly aligned with the propagation
direction.

Sharp 90 turns with no loss are one of the main advantages
touted for the photonic crystal line defect waveguide [13]–[15].
Self-collimated beams can also be bent toward a symmetrically
equivalent direction through total internal reflection by an in-
terface with a lower index media [7], [8]. A perfect mirror is
also formed by a photonic crystal with a bandgap in the fre-
quency range of interest. For the case of a silicon-silica struc-
ture, an increase in the radius of the silicon pillars to 0.3 is suf-
ficient to shift the bandgap down to coincide with the self-colli-
mating frequencies of the original structure, as shown in Fig. 11.
The bandgap extends between normalized frequencies of 0.24
and 0.28 corresponding to the region of self-collimation in the
original structure. By increasing the radius of a diagonal or tri-
angular area intersecting the path of the self-collimated beam,
perfect reflection into a perpendicular direction can be accom-
plished. Fig. 12 shows the structure and the intensity profile of a
1.55 m beam making a 90 bend. The intensity difference be-
tween the input and output beams is due to interference between
the incident and reflected beams. The transmission coefficient
and the beamwidth expansion after traveling 85.6 m and one
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Fig. 13. Beam spread and transmission coefficient for a Gaussian beam
traveling through 85.6 �m and one 90 turn in a photonic crystal virtual
waveguide.

Fig. 14. Noninteracting crossings of self-collimated beams in a photonic
crystal virtual waveguide.

90 turn are shown in Fig. 13. The beam maintains its collima-
tion and intensity even after reflection from the photonic crystal
mirror and shows an oscillation in the transmission coefficient
analogous to the straight virtual waveguide.

In addition to sharp turns, the virtual waveguide system has
the unique advantage among waveguiding structures of allowing
beams to cross each other with no coupling, akin to free-space
optics. Fig. 14 illustrates two self-collimated beams traveling
through a square photonic crystal virtual waveguide. No cou-
pling occurs between the two beams. This unique combination
of guiding and propagation behavior allows compact routing of
signals on one optical signal plane rather than having to use
complex 3-D structures to avoid signal crossings.

To demonstrate the potential of the virtual waveguide system
for routing optical signals, a permutation of three parallel
beams switching the output location of the first and third beam
is conducted using the FDTD method with the results shown

Fig. 15. Routing three parallel beams with different wavelengths and widths
within a single signal layer using the photonic crystal virtual waveguide.

in Fig. 15. Beamwidths of 9.97 m, 8.55 m, and 7.12 m
along with wavelengths of 1555 nm, 1550 nm, and 1545 nm,
respectively, are used. This device requires an area spanning
only 91.2 m 68.4 m and a single layer as opposed to other
waveguiding methods which could take mm or even cm
worth of area and two layers to accomplish the same task.

IV. FUTURE APPLICATIONS

Photonic crystal virtual waveguides have unique properties
with great promise for optical interconnect applications, as well
as all-optical devices. Tolerance to misalignment brings the ac-
curacy necessary to achieve good coupling within the limits
of the current chip placement and wire bonding technologies.
Therefore, methods similar to wire bonding can be applied for
low-cost and fast throughput of optical interconnects. Fig. 16
shows a schematic of a configuration where this type of con-
nection can be used. Optical fibers can be directly bonded to
the side of a silicon chip where a photonic crystal virtual wave-
guide carries the signal to the photodetector. Such configura-
tions can dramatically save time and cost compared with con-
ventional methods.

Even though the structure investigated in this paper is a 2-D
slab structure, 3-D photonic crystals also exhibit self-collima-
tion and can be used for virtual waveguides. A virtual waveguide
utilizing a 3-D photonic crystal with a cubic unit cell can freely
route light in the X, Y, and Z directions. The capability to route
light freely in three dimensions coupled with the ability to cross
signals will allow interconnects of the most complex systems.

Finally, by utilizing a material system consisting of non-
linear materials, the mirrors, as well as other features, can
be reconfigured and reshaped with an applied electric field.
Optical switching and complex optical circuitry can be created,
opening the door for a wide range of compact optical devices.
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Fig. 16. Low-cost optical interconnect from fiber to a semiconductor chip utilizing the misalignment tolerance of the photonic crystal waveguide.

V. CONCLUSION

Photonic crystal virtual waveguides are a novel optical inter-
connect technology allowing cost effective interconnect from a
fiber or the optical backplane to an integrated optical/electrical
chip due to its high misalignment tolerance. The self-collima-
tion phenomenon is less sensitive to fabrication error compared
with other resonant subwavelength optical devices since it does
not rely on a sharp resonance peak to achieve its performance
and can be fabricated using the current state of the art technolo-
gies. In addition, the ability to perform abrupt 90 turns and to
cross signals with no coupling gives flexibility in the routing cir-
cuit layout that is even superior to electrical interconnects. By
taking advantage of the resonator-like transmission properties,
the coupling coefficient can be improved beyond the limits of
Fresnel reflections. Virtual waveguide structures using 2-D and
3-D photonic crystals hold great potential for revolutionalizing
integrated optical interconnects, combining the advantages of
free-space optics and guided wave optics for complete control
of the optical signal.
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